Lecture 1.2

- Algorithm generalities
- Finding exact matches in sequences using suffix arrays
- Hashtables
Algorithms – Some General Remarks

• The most widely used algorithms are the oldest
 – e.g. sorting lists, traversing trees, dynamic programming.

The challenge in CMB is usually not finding new algorithms, but rather
 – finding biologically appropriate applications of old ones.

• Often prefer
 – suboptimal but easy-to-program algorithm over more optimal one
 – or space-efficient algorithm over time-efficient one.

• Probabilities are important in
 – interpreting results
 – guiding search

The most powerful analyses generally involve probabilistic models, rather than deterministic ones.
Genomes are big but computers are fast!

- Typical laptop clock speed: ~ 1 Ghz
 - Potentially billions of CPU instructions / sec
- Important practical consideration in dealing with genome-scale data sets: compared to CPU operations,
 - *non-cache memory accesses* are very slow (100s of cycles)
 - *disk accesses* are even slower (1000s of cycles)
 - for both, random (non-sequential) accesses are much slower than sequential accesses
Exponents & logarithms

- $\log_a(a^b) = b$, $a^{\log_a(b)} = b$ (log inverts exp)
- $a^{b+c} = a^b \cdot a^c$ \hspace{1cm} \log_a(df) = \log_a(d) + \log_a(f)$
- $(a^b)^c = a^{bc}$ \hspace{1cm} \log_a(d^f) = f \cdot \log_a(d)$
- $a^0 = 1$ \hspace{1cm} \log_a(1) = 0$
- $a^1 = a$ \hspace{1cm} \log_a(a) = 1$
- $a^{-b} = 1/a^b$ \hspace{1cm} \log_a(1/d) = -\log_a(d)$
- $\log_c(b) = \log_a(b) / \log_a(c)$
• $4 = 2^2$
• $4^5 = 2^{10} = 1024 \approx 10^3$
• $4^{10} = 2^{20} \approx 10^6$
• $4^{15} = 2^{30} \approx 10^9$
• $4^n = \# \text{ DNA words of length } n$
• $\log_4(10^9) \approx 15$
Finding perfectly matching subsequences of a sequence

- Idea (much more efficient than ‘brute force’ approach):
 - suffix array (Manber & Myers, 1990)
 - make list of positions in sequence
 - each position ‘points to’ a suffix
 = subsequence starting at that position & extending to end of sequence
 - lexicographically sort list of pointers
 - process the list: adjacent entries are “maximally agreeing”
Suffix array step 1: List of Pointers to Suffixes

ACCTGCACTAAACCCTACACTGGGTTCAAGAGATTTCCC

\[p_1 \quad ACCTGCACTAAACCCTACACTGGGTTCAAGAGATTTCCC \]
\[p_2 \quad CCTGCACTAAACCCTACACTGGGTTCAAGAGATTTCCC \]
\[p_3 \quad CTGCACTAAACCCTACACTGGGTTCAAGAGATTTCCC \]
\[p_4 \quad TGCACTAAACCCTACACTGGGTTCAAGAGATTTCCC \]
\[p_5 \quad GCACTAAACCCTACACTGGGTTCAAGAGATTTCCC \]
\[p_6 \quad CACTAAACCCTACACTGGGTTCAAGAGATTTCCC \]
\[p_7 \quad ACTAAACCCTACACTGGGTTCAAGAGATTTCCC \]
\[p_8 \quad CTAAACCCTACACTGGGTTCAAGAGATTTCCC \]
\[p_9 \quad TAAACCCTACACTGGGTTCAAGAGATTTCCC \]
\[p_{10} \quad AAAAAAACCCTACACTGGGTTCAAGAGATTTCCC \]
\[p_{11} \quad AAAAAACCCTACACTGGGTTCAAGAGATTTCCC \]
\[p_{12} \quad AAAAAAAAAAACCCTACACTGGGTTCAAGAGATTTCCC \]

\[: \]

\[: \]
• The ‘pointers’ are just positions (represented by integers) – *not* (necessarily) memory addresses

• *Do not* store the substrings!
Suffix array step 2: View as Strings to be Compared

ACCTGCACTAAACCGTACACTGGGTTCAAGAGAGATTTCCC

\[p_1 \quad ACCTGCACTAAACCGTACACTGGGTTCAAGAGAGATTTCCC \]
\[p_2 \quad CCTGCACTAAACCGTACACTGGGTTCAAGAGAGATTTCCC \]
\[p_3 \quad CTGCACTAAACCGTACACTGGGTTCAAGAGAGATTTCCC \]
\[p_4 \quad TGCACTAAACCGTACACTGGGTTCAAGAGAGATTTCCC \]
\[p_5 \quad GCACTAAACCGTACACTGGGTTCAAGAGAGATTTCCC \]
\[p_6 \quad CACTAAACCGTACACTGGGTTCAAGAGAGATTTCCC \]
\[p_7 \quad ACTAAACCGTACACTGGGTTCAAGAGAGATTTCCC \]
\[p_8 \quad CTAAACCGTACACTGGGTTCAAGAGAGATTTCCC \]
\[p_9 \quad TAAACCGTACACTGGGTTCAAGAGAGATTTCCC \]
\[p_{10} \quad AAACCGTACACTGGGTTCAAGAGAGATTTCCC \]
\[p_{11} \quad AACCGTACACTGGGTTCAAGAGAGATTTCCC \]
\[p_{12} \quad ACGTACACTGGGTTCAAGAGAGATTTCCC \]
\[\vdots \]
Suffix array step 3:
Sort the Pointers Lexicographically

ACCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC

\[p_{10} \quad AAACCGTACACTGGGTTCAAGAGATTTCCC \]
\[p_{11} \quad AAACCGTACACTGGGTTCAAGAGATTTCCC \]
\[p_{28} \quad AAGAGATTTC CCC \]
\[p_{17} \quad ACACTGGGTTCAAGAGAATTTCCC \]
\[p_{12} \quad ACCGTACACTGGGTTCAAGAGAATTTCCC \]
\[p_{1} \quad ACCTGCACTAAACCGTACACTGGGTTCAAGAGAATTTCCC \]
\[p_{7} \quad ACTAAACCGTACACTGGGTTCAAGAGAATTTCCC \]
\[p_{19} \quad ACTGGGGTTCAAGAGAATTTCCC \]
\[p_{29} \quad AGAGATTTC CCC \]
\[p_{31} \quad AGATTTC CCC \]
\[p_{33} \quad ATTTCCC \]
\[p_{27} \quad CAAGAGAATTTCCC \]
Finding Matching Subsequences Using the Sorted List of Pointers

• Perfectly matching subsequences
 – (more precisely – the pointers to the starts of those subsequences)
 are “near” each other in the sorted list

• For a given subsequence, a longest perfect match to it is adjacent to it in the sorted list
 – (there may be other, equally long matches which are not adjacent, but they are nearby).
(Average Case) Complexity Analysis

• If $N =$ sequence length, sorting can be done with
 – $O(N \log(N))$ comparisons,
 – each requiring $O(\log(N))$ steps on average,
for an overall complexity of $O(N(\log(N))^2)$.
 – (Processing the sorted list requires an additional $O(N)$ steps which does not affect the overall complexity).

• Manber & Myers (1990) have more efficient algorithm ($O(N \log(N))$)

• several $O(N)$ algorithms are now known – but the best implementations are not as fast as $O(N \log(N))$ algorithms, even for very large genomes!!

• ∃ other, older $O(N)$ methods (‘suffix trees’), but these are
 – much less space efficient,
 – harder to program, and
 – (probably) slower in practice
• Can use to find matches *among multiple sequences* by concatenating them (+ reverse complements)
 – e.g. *sequence assembly* of a large # of reads
• HW #1 asks you to apply this algorithm to find:
 – longest perfectly matching subsequences in 2 genomic sequences & their reverse complements.
• much faster than an $O(N^2)$ algorithm (e.g. Smith-Waterman, or even BLAST), *but*
• limited to finding *exact* matches
Hashtables

• Similar purpose: to store locations of subsequences in a way that allows quick finding of matches
• But using subsequences (or *words*) of a fixed length w
• Idea: work thru the sequence a base at a time.
 – for the word starting at position p:
 • Convert the word into a table location
 • If that location is already occupied, find a nearby unoccupied one
 • Store p, and (if necessary) enough additional information to reconstruct the word
• Advantages (relative to suffix arrays):
 – only $O(N)$ to construct table, $O(1)$ to lookup an entry

• Disadvantages:
 – less memory efficient
 – requires choice of a fixed word length w
 – (slightly) harder to program