Lecture 10

• Reducing memory
 – Linear space algorithms

• Finding internal repeats

• Genome alignment
Above path corresponds to following alignment (w/ lower case letters considered unaligned):

```
aCGTTGAATGAccca
\n\ngCAT-GAC-GA
```
• To reconstruct best path, need “traceback” pointer to immediate predecessor of v in best path:

$$T(v) = \begin{cases}
 v & w(v) = 0 \\
 \arg\max_{u \in \text{parents}(v)} (w(u) + w((u,v))) & w(v) \neq 0
\end{cases}$$

– in preceding graph, $T(v)$ is the parent on red edge coming into v
 • if more than one such edge, pick one at random;
 • if no such edge, $T(v) = v$

• Sometimes useful to record beginning of best path:

$$B(v) = \begin{cases}
 v & w(v) = 0 \\
 B(T(v)) & w(v) \neq 0
\end{cases}$$
Linear Space Algorithm for Full Alignment Reconstruction

• Space complexity 10^{12} (for pairwise genome-scale alignments) is unacceptable.

• Following algorithm (based on principle of divide-and-conquer) trades
 – ~2-fold increase in time
 • Maybe! Will save on cache misses …

for
 – reducing space requirement to $O(\min(M,N))$:

• [rarely used in practice however – instead one typically tries to work with “well-anchored” pieces smaller than 1 Mb]
“Forward-backward” method to find where highest-scoring path crosses midline of edit graph:

- do dynamic programming scans
 - from left bdry to midline,
 - from right bdry to midline.
- Then \(\max_{v \text{ on midline}} w(v) + w'(v) \)
 is highest weight of any path through midline, and

\[
M(v) = \arg \max_{v \text{ on midline}} w(v) + w'(v)
\]

is vertex where intersects midline.

- Iterate on subgraphs.
Inverted WDAGs

• Can “invert” any WDAG: create graph with
 – same vertices & edge weights
 – direction of each edge reversed
• inverted WDAG has same paths & path weights, but in reverse order
• inverting does not necessarily “invert” depth structure
Scanning WDAG in Both Directions

• Order vertices \((v_1, v_2, \ldots, v_n)\) with parents preceding children.
 – Find \(w(v)\), highest weight of path ("from left") ending at \(v\).

• Reverse order \((v_n, v_{n-1}, \ldots, v_1)\) has parents before children in *inverted* graph
 – Find \(w'(v)\), highest weight of path ("from right") ending at \(v\).

• Then
 – (joining path from left ending at \(v\), to reverse of path from right ending at \(v\)),
 see that \(w(v) + w'(v)\) is highest weight of any path going *through* \(v\).

• This construction will also arise later, with HMMs.
Linear space algorithm (cont’d)

• Now do 2nd pass, \textit{only scanning part of graph where highest weight path must lie}:
 – bounded by midline, and line through $M(v)$ (or just midline, if doesn’t cross it):
 – only $\frac{1}{2}$ as many edges and vertices as in 1st pass
 – Now store location where crosses midline of each subgraph.
Iterate!

- In 3rd pass, need
 - ½ # edges and vertices in 2nd pass,
 - i.e. only ¼ # in 1st pass.

- etc. until down to subgraphs consisting of single row or column

- can piece together full path from midline intersections in each pass

- Total effective search space: $1 + \frac{1}{2} + \frac{1}{4} + \ldots = 2$, i.e. only *twice* the initial search.
Alternate method – not using inverted WDAG

• Idea: in first pass, record where highest-weight path ending at v crosses *midline* of graph:

 \[
 M(v) = \begin{cases}
 0 & \text{ if } v \text{ lies to left of midline, or } v = T(v) \\
 v & \text{ if } v \text{ lies on midline} \\
 M(T(v)) & \text{ if } v \text{ lies to right of midline}
 \end{cases}
 \]

 where $T(v)$ is parent of v through which best path ending at v passes.

• Note that (as when recording beginning of path, $B(v)$)

 – only need retain $M(v)$ until all children of v processed (or for current best v);
 – so requires $O(\min(M,N))$ space, for appropriate processing order.

• In subsequent pass, only scan part of graph where highest weight path must lie

 – bounded by midline, and line through $M(v)$ (or just midline, if doesn’t cross it):
midline

<table>
<thead>
<tr>
<th>Search in 2d pass</th>
<th>Ignore in 2d pass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ignore in 2d pass</td>
<td>Search in 2d pass</td>
</tr>
</tbody>
</table>
Linear Space – Variant Algorithms

• Can store more intermediate points (e.g. have n lines, record where crosses each one).
 – increases required space, but
 – decreases time ($1/n$ instead of $1/2$) for subsequent pass.

• Choose n to minimize time, given the space available.
Finding (imperfect) internal repeats

- Search edit graph of *sequence against itself*
 - i.e. the same sequence labels columns and rows

 above (& not including) the main diagonal:
 - if include main diagonal, best path will be identity match to self
 - complexity = $O(N^2)$ where N = sequence length.

Graph for finding imperfect internal repeats:
Find short tandem repeats (e.g. microsatellites, minisatellites):
- scan a band just above main diagonal.
- Complexity = $O(kN)$ where k is width of the band.
- Manageable even for large N, if k small.

Graph for finding short tandem repeats:
Genome alignment

- Challenges:
 - Size
 - Repeated sequence
 - Duplications
 - Transposable elements
 - Processed pseudogenes
 - Other segmental changes
 - Deletions
 - Inversions, translocations
 - Mutation rate variation
- Segmental changes don’t conform to edit graph framework!
Strategy

• Find (many!) word-nucleated local alignments

• Word size w: sensitivity vs specificity
 – Example: human (~3 Gb) vs mouse (~2.5 Gb)
 • ~70% identity in homologous regions
 • For each human word, expect $5 \times 10^9 / 4^w$ chance occurrences in mouse (+ rev complement)
 • Total matches: $15 \times 10^{18} / 4^w$
 – Want w large enough for this to be manageable
 • Prob that the homologous word matches: 0.7^w
 – once every $(1 / .7)^w = 1.43^w$ bp
 – Want w small enough to ensure ≥ 1 match within homologous regions
 • $w = 15$: ~15×10^9 matches; 1 per 214 homologous bp
• Avoid high-frequency words
• Avoid nucleating in known repeats & duplications
 – But extend into them!
• Use appropriate score matrix & gap penalties!
 – Otherwise, get junk alignments or portions thereof
• Finally, identify *chains* of *compatible* local alignments
 – Ideally, catalogue the segmental changes that have occurred (duplications, transposable element insertions etc)