Today’s Lecture

• Forward/Backward algorithm

• Baum-Welch training
WDAG for 3-state HMM, length n sequence

weights are emission probabilities $e_k(b_i)$ for i^{th} residue b_i

weights are transition probabilities a_{kl}

b_{i-1} position $i-1$

b_i position i

b_{i+1} position $i+1
For each vertex v, let $f(v) = \sum_{\text{paths } p \text{ ending at } v} \text{weight}(p)$, where \(\text{weight}(p) = \text{product} \) of edge weights in p. Only consider paths starting at ‘begin’ node.

Compute $f(v)$ by dynam. prog: \(f(v) = \sum_i w_i f(v_i) \), where v_i ranges over the parents of v, and $w_i = \text{weight of the edge from } v_i \text{ to } v$.

Similarly for $b(v) = \sum_{p \text{ beginning at } v} \text{weight}(p)$

The paths \textit{beginning} at v are the ones \textit{ending} at v in the \textit{reverse} (or \textit{inverted}) graph.
$f(v)b(v) = \text{sum of the path weights of all paths through } v.$

$f(v')wb(v) = \text{sum of the path weights of all paths through the edge } (v',v)$
• Numerical issues: multiplying many small values can cause underflow. Remedies:

 – *Scale* weights to be close to 1 (affects all paths by same constant factor – which can be multiplied back later); or

 – (where possible) use *log weights*, so can add instead of multiplying.

 – see Rabiner & Tobias Mann links on web page
 • & will discuss further in discussion section
Forward/backward algorithm

• Work through graph in forward direction:
 – compute and store $f(v)$

• Then work through graph in backward direction:
 – compute $b(v)$
 – compute $f(v) b(v)$ and $f(v)wb(v)$ as above, store in appropriate cumulative sums
 – only need to store $b(v)$ until have computed b’s at next position

• Posterior probability of being in state s at position i is $f(v) b(v) / \text{total sequence prob}$
 – where v is the corresponding graph node
Baum-Welch training

• Special case of EM (‘expectation-maximization’) algorithm

• like Viterbi training, but
 – uses *all* paths, each weighted by its probability rather than just highest probability path.

• sometimes give significantly better results than Viterbi
 – e.g. for PFAM
Implementing Baum-Welch

- An edge in the WDAG contributes *fractional* (or *weighted*) *counts* given by its posterior probability:

- \((\star): \frac{\sum_{\text{all paths } p \text{ through edge } e} \text{weight}(p))}{\sum_{\text{all paths } p} \text{weight}(p)}\)

(Fractional counts are computed using forward-backward algorithm)
\[f(v)b(v) = \text{sum of the path weights of all paths through } v. \]

\[f(v')wb(v) = \text{sum of the path weights of all paths through the edge } (v',v) \]
– Compute new param estimates

 • $e_k(b)^\wedge = \frac{\text{# times symbol } b \text{ emitted by state } k}{\text{# times state } k \text{ occurs}}$

 • $a_{kl}^\wedge = \frac{\text{# times state } k \text{ followed by state } l}{\text{# times state } k \text{ occurs}}$

 – (In denom., omit frac counts at last position of sequence)

where “frac. # times” is given by (*) for appropriate edge type (emission or transition)
– New Baum-Welch parameter estimates have higher likelihood
 • general property of EM algorithm
 • not true in general for Viterbi training

– Iterate: get series of estimates converging to a local maximum on likelihood surface
Search of parameter space

• ML estimates correspond by definition to \textit{global} maximum;

• but there may be many \textit{local} maxima, and EM or Viterbi search can get “trapped” in one

• remedies:
 – Consider multiple starts (multiple choices for starting parameters)
 – use “reasonable values” to start search (e.g. unlikely transitions should be given small initial probabilities)
– Allow search to “jump” out of local maxima:
 • Add “noise” to counts at each iteration; gradually reduce the amount of noise
 • Use Viterbi-like training, but
 – sample paths probabilistically
 » (in retracing Viterbi path, choose edge at random according to its prob, rather than taking highest prob parent);
 – use “temperature” T to adjust probabilities;
 » initially with large T making all probs approximately equal;
 » then gradually reduce T
 – similar to Gibbs sampler
Probabilistic Viterbi Backtracking

reset all weights w to $w^{1/T}$. For large T (>> 1), this makes distinct w’s relatively close; for small T (<< 1), relatively far apart

choose parent v_i with probability $w_i f(v_i) / f(v)$. For large T, all parents almost equally likely to be chosen; for small T, strongly favor largest (max) $w_i f(v_i)$

given choice of paths, re-estimate weights; iterate