Lecture 13

• HMM probability calculations
 – WDAG
 – Viterbi algorithm

• 2-state HMMs & D-segments
Hidden Markov Model

observed symbols

unobserved states
HMM Probabilities of Sequences

• Prob of sequence of states \(\pi_1 \pi_2 \pi_3 \ldots \pi_n \) is
 \[a_{0\pi_1} a_{\pi_1\pi_2} a_{\pi_2\pi_3} \ldots a_{\pi_{n-1}\pi_n}. \]

• Prob of seq of observed symbols \(b_1 b_2 b_3 \ldots b_n \),
 conditional on state sequence is
 \[e_{\pi_1}(b_1)e_{\pi_2}(b_2)e_{\pi_3}(b_3)\ldots e_{\pi_n}(b_n) \]

• Joint probability
 \[= a_{0\pi_1} \prod_{i=1}^{n} a_{\pi_i\pi_{i+1}} e_{\pi_i}(b_i) \]
 (define \(a_{\pi_n\pi_{n+1}} \) to be 1)

• (Unconditional) prob of observed sequence
 = sum (of joint probs) over all possible state paths
 – not practical to compute directly, by ‘brute force’! We will use
 dynamic programming.
Computing HMM Probabilities

- WDAG structure for sequence HMMs:
 - for \(i^{th}\) position in seq \((i = 1, \ldots, n)\), have 2 nodes for each state:
 - total # nodes = \(2ns + 2\), where \(n = \) seq length, \(s = \#\) states
 - Pair of nodes for a given state at \(i^{th}\) position is connected by an \textit{emission edge}
 - Weight is the emission prob for \(i^{th}\) observed residue
 - Can omit node pair if emission prob = 0
 - Have \textit{transition edges} connecting (right-hand) state nodes at position \(i\) with (left-hand) state nodes at position \(i+1\)
 - Weights are transition probs
 - Can omit edges with transition prob = 0
WDAG for 3-state HMM, length n sequence

weights are emission probabilities $e_k(b_i)$ for i^{th} residue b_i

weights are transition probabilities a_{kl}

b_{i-1}
position $i-1$

b_i
position i

b_{i+1}
position $i+1
Beginning of Graph
• *Paths* through graph from begin node to end node correspond to *sequences of states*

• *Product weight* along path

 $= \text{joint probability}$ of state sequence & observed symbol sequence

• *Highest-weight path* $= \text{highest probability state sequence}$

• *Sum of (product) path weights, over all paths*,

 $= \text{probability of observed sequence}$

• *Sum of (product) path weights over*

 – all paths going through a particular node, or

 – all paths that include a particular edge,

 divided by prob of observed sequence,

 $= \text{posterior probability}$ of that edge or node
Path Weights

\[e_1(b_{i-1}) \]

\[e_2(b_i) \]

\[e_3(b_{i+1}) \]

position \(i-1 \) \hspace{2cm} position \(i \) \hspace{2cm} position \(i+1 \)
• By general results on WDAGs, can use dynamic programming to find highest weight path:
 = “Viterbi algorithm” to find highest probability path (most probable “parse”)
– in this case can use log probabilities & sum weights
– (N.B. paths are constrained to begin at the begin node!)
The Viterbi path is the *most probable parse*!
Complexity

- $= O(|V|+|E|)$, i.e. total # nodes and edges.
- # nodes = $2ns + 2$
 - where $n =$ sequence length,
 - $s =$ # states.
- # edges = $(n - 1)s^2 + ns + 2s$

- So overall complexity is $O(ns^2)$
 - (actually s^2 can be reduced to # ‘allowed’ transitions between states – depends on model topology).
begin state b_1 position 1 b_2 position 2 b_3 position 3
2-state HMMs & D-segments
from lecture 12

A A T G C C T G G A T A

G+C-rich state

A+T-rich state
from lecture 7

maximal segment

1st maximal D-segment

D:

2d maximal D-segment
• $O(N)$ algorithm to find all maximal D-segs:

$$\text{cumul} = \text{max} = 0; \text{start} = 1;$$

for (i = 1; i \leq N; i++) {
 cumul += s[i];
 if (cumul \geq max)
 {max = cumul; end = i;}
 if (cumul \leq 0 or cumul \leq max + D or i == N) {
 if (max \geq S)
 {print start, end, max; }
 max = cumul = 0; start = end = i + 1; /* NO BACKTRACKING NEEDED! */
 }
}
D-segments ≈ 2-state HMMs

• Consider 2-state HMM
 – states 1 & 2, transition probs $a_{11}, a_{12}, a_{21}, a_{22}$
 – observed symbols \{r\}, emission probs \{e_1(r)\}, \{e_2(r)\}

• Define
 scores $s(r) = \log(e_2(r) a_{22}/(e_1(r) a_{11}))$
 $S = -D = \log(a_{11}a_{22}/(a_{21}a_{12}))$

• Then if $S > 0$, the maximal D-segments in a sequence $(r_i)_{i=1,n}$ are the state-2 segments in the Viterbi parse

• (can allow for non-.5 initiation probs by starting cumul at non-zero value)
D-segments vs HMMs

- **D-segments**
 - are very *easy to program*!
 - give Viterbi parse in *just one pass* through the sequence
 - somewhat more flexible (S, D settings)

- **HMMs**
 - allow more powerful parameter *estimation*
 - can attach *probabilities* to alternative decompositions
 - easily generalize to > 2 *types* of segments—just allow more states