Today’s Lecture

• More HMM examples

• Limitations of HMMs

• PhyloHMMs

• PhastCons
HMM Examples (cont’d)

• Simple 7-state prokaryote genome model:
 – 1 state for intergenic regions
 – 3 states for codon positions in top-strand genes
 – 3 for codon positions in bottom-strand genes

• more complex models including sites (with states for each position in site) –
 – promoter elements
 – Shine-Dalgarno (translation start site)
 – (in eukaryotes) splice sites, polyadenylation sites etc.
7-state model for prokaryote genomes

intergenic
- first codon position – top strand coding sequence
- second codon position – top strand coding sequence
- third codon position – top strand coding sequence
- first codon position – bottom strand coding sequence
- second codon position – bottom strand coding sequence
- third codon position – bottom strand coding sequence

a (very short!) ‘bottom-strand’ gene, in a different region of the genome:
• N.B. the emitted symbols are always *top strand* nucleotides!
Other HMM examples (see Durbin et al.)

- protein families (like site models – but important to allow insertions & deletions)
- Pair HMMs
- protein structure (symbols emitted are structural elements)
HMM Examples (cont’d)

• **Ordinary Markov chain model:**
 – states = observed symbols
 – emission probs = 1 or 0
 – transition probs = prob of observing a symbol, given the preceding one.

• **Order \(k \) Markov model**
 – states = length \(k \) words (e.g. \(b_1 b_2 \ldots b_k \))
 – (unique) symbol emitted by \(b_1 b_2 \ldots b_k \) is \(b_k \)
 – transition prob from \(b_1 b_2 \ldots b_k \) to \(c_1 c_2 \ldots c_k \) is non-zero only if
 • \(c_1 c_2 \ldots c_{k-1} = b_2 b_3 \ldots b_k \), in which case it is
 \[P(b_{k+1}|b_1 b_2 \ldots b_k) \text{ where } b_{k+1} = c_k \]
Limitations of HMMs

• Markov chain cond’n on states is unrealistic
 – biological features have complex dependencies

• In particular, duration modelling frequently unrealistic
 – can deal with this
 • Increase number of states
 • ‘generalized HMMs’
 – but at cost of speed & elegance

• Other issues (arising with any complex models!)
 – Parameter estimation can be difficult and give suboptimal results
 • many local maxima in complex surface
 – Need to avoid overfitting
Detecting sequence conservation with PhyloHMMs

- PhyloHMMs: Yang 1995; Felsenstein & Churchill 1996
 - basis of PhastCons conservation scores (UCSC genome browser)
• Goal: starting from multiple genome sequence alignment, identify
 – conserved regions (regions under purifying selection), against background of
 – neutrally evolving regions
PhastCons PhyloHMM

• model:
 – 2-state HMM
 c: conserved state
 n: neutral (or nonconserved) state
 – emitted symbols are alignment columns
 – emission probabilities based on phylogenetic tree relating sequences
 • discussed in Genome 541, or molecular phylogeny course
 – gaps in alignment treated as missing data
PhastCons PhyloHMM
