Lecture 14

- Forward & forward/backward algorithms

- HMM parameter estimation
 - Viterbi training
 - Baum-Welch training
Hidden Markov Model

observed symbols

A \rightarrow \pi_1 \rightarrow \pi_2 \rightarrow \pi_3 \rightarrow A

G \rightarrow \pi_2 \rightarrow \pi_3 \rightarrow G

C \rightarrow \pi_3 \rightarrow C

A \rightarrow \pi_i \rightarrow \pi_{i+1}

T \rightarrow \pi_{i+1}

unobserved states

0 \rightarrow \pi_1 \rightarrow \pi_2 \rightarrow \pi_3 \rightarrow 0

\scriptstyle e_{\pi_1}(A) \quad e_{\pi_2}(G) \quad e_{\pi_3}(C)

\scriptstyle e_\pi(A) \quad e_\pi(C) \quad e_\pi(T)

\scriptstyle a_{0\pi_1} \quad a_{\pi_1\pi_2} \quad a_{\pi_2\pi_3} \quad a_{\pi_3\pi_4} \quad a_{\pi_i\pi_{i+1}}
WDAG for 3-state HMM, length n sequence

weights are emission probabilities $e_k(b_i)$ for i^{th} residue b_i

weights are transition probabilities a_{kl}

b_{i-1} position $i-1$

b_i position i

b_{i+1} position $i+1$
Path Weights

\[e_1(b_{i-1}) \]

\[a_{12} \]

\[e_2(b_i) \]

\[a_{23} \]

\[e_3(b_{i+1}) \]

position \(i-1\) position \(i\) position \(i+1\)
• **Paths** through graph from begin node to end node correspond to *sequences of states*

• **Product weight** along path

 \[\text{Product weight} = \text{joint probability} \] of state sequence & observed symbol sequence

• **Highest-weight path** = *highest probability state sequence*

• **Sum of (product) path weights, over all paths,**

 \[\text{Sum of (product) path weights} = \text{probability of observed sequence} \]

• **Sum of (product) path weights over**

 – all paths going through a particular node, or

 – all paths that include a particular edge,

 divided by prob of observed sequence,

 \[= \text{posterior probability} \] of that edge or node
• use dynamic programming to find
 – sum of all product path weights
 = “forward algorithm” for probability of observed sequence
 – sum of all product path weights through particular node or particular edge
 = “forward/backward algorithm” to find posterior probabilities

• Now must use product weights and non-log-transformed probabilities
 – because need to add probabilities
• In each case, compute successively for each node (by increasing depth: left to right)
 – the sum of the weights of all paths ending at that node
 – N.B. paths are constrained to begin at the begin node!

• In forward/backward algorithm,
 – work through all nodes a second time, in opposite direction
 • i.e. in reverse graph – constraining paths to start in rightmost column of nodes
For each vertex v, let $f(v) = \sum_{\text{paths } p \text{ ending at } v} \text{weight}(p)$, where \text{weight}(p) = \text{product} of edge weights in p. Only consider paths starting at ‘begin’ node.

Compute $f(v)$ by dynam. prog: $f(v) = \sum_i w_i f(v_i)$, where v_i ranges over the parents of v, and $w_i = \text{weight of the edge from } v_i \text{ to } v$.

Similarly for $b(v) = \sum_p \text{beginning at } v \text{ weight}(p)$

The paths \textit{beginning} at v are the ones \textit{ending} at v in the \textit{reverse} (or \textit{inverted}) graph.
from lecture 10:

• Can “invert” any WDAG: create graph with
 – same vertices & edge weights
 – direction of each edge reversed

• inverted WDAG has same paths & path weights, but in reverse order

• inverting does not necessarily “invert” depth structure
\[f(v)b(v) = \text{sum of the path weights of all paths through } v. \]

\[f(v')wb(v) = \text{sum of the path weights of all paths through the edge } (v',v) \]
Forward/backward algorithm

• Work through graph in forward direction:
 – compute and store $f(v)$

• Then work through graph in backward direction:
 – compute $b(v)$
 – compute $f(v) b(v)$ and $f(v) wb(v)$ as above, store in appropriate cumulative sums
 – only need to store $b(v)$ until have computed b’s at next position

• Posterior probability of being in state s at position i is $f(v) b(v) / \text{total sequence prob}$
 – where v is the corresponding graph node
Numerical issues: multiplying many small values can cause underflow. Remedies:

- **Scale** weights to be close to 1 (affects all paths by same constant factor – which can be multiplied back later); or

- (where possible) use log weights, so can add instead of multiplying.

- see Rabiner & Tobias Mann links on web page
HMM Parameter Estimation

- **Parameters** = transition & emission probs
 - parameter values \leftrightarrow probability model

- If unknown, estimate from set of training sequences

- **Maximum likelihood** (ML) estimation (= choice of param vals to maximize prob of training data) is preferred
 - optimality properties of ML estimates discussed in Ewens & Grant

\leftrightarrow finding maximum value on a multi-dimensional surface
- Hard problem! Can be many local maxima
Parameter estimation when state sequence is *known*

- When underlying state sequence for each training sequence is *known*,
 - e.g.: site model
then ML estimates are given by:

 - emission probabilities:
 \[e_k(b) = \frac{\text{(# times symbol } b \text{ emitted by state } k)}{\text{(# times state } k \text{ occurs)}}. \]
 - transition probabilities:
 \[a_{kl} = \frac{\text{(# times state } k \text{ followed by state } l)}{\text{(# times state } k \text{ occurs)}} \]
 - in denominator above, *omit occurrence at last position of sequence* (for transition probabilities)
 - But include it for emission probs
 - can include pseudocounts, to incorporate prior expectations/avoid small sample overfitting (Bayesian justification)
HMM for *C. elegans* 3’ Splice Sites

3’ ss

Intron Exon

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>C</th>
<th>G</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3276</td>
<td>970</td>
<td>593</td>
<td>3353</td>
</tr>
<tr>
<td>1</td>
<td>3516</td>
<td>648</td>
<td>575</td>
<td>3453</td>
</tr>
<tr>
<td>2</td>
<td>2313</td>
<td>664</td>
<td>516</td>
<td>4699</td>
</tr>
<tr>
<td>3</td>
<td>476</td>
<td>236</td>
<td>144</td>
<td>7336</td>
</tr>
<tr>
<td>4</td>
<td>67</td>
<td>129</td>
<td>39</td>
<td>7957</td>
</tr>
<tr>
<td>5</td>
<td>757</td>
<td>1109</td>
<td>595</td>
<td>5731</td>
</tr>
<tr>
<td>6</td>
<td>240</td>
<td>6830</td>
<td>12</td>
<td>1110</td>
</tr>
<tr>
<td>7</td>
<td>8192</td>
<td>0</td>
<td>8192</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>3359</td>
<td>1277</td>
<td>1277</td>
<td>1017</td>
</tr>
<tr>
<td>10</td>
<td>2401</td>
<td>1533</td>
<td>1847</td>
<td>2957</td>
</tr>
<tr>
<td>11</td>
<td>2514</td>
<td>1847</td>
<td>1567</td>
<td>2264</td>
</tr>
</tbody>
</table>

CONSENSUS

<table>
<thead>
<tr>
<th></th>
<th>W</th>
<th>W</th>
<th>W</th>
<th>T</th>
<th>T</th>
<th>t</th>
<th>C</th>
<th>A</th>
<th>G</th>
<th>r</th>
<th>w</th>
<th>w</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.400</td>
<td>0.429</td>
<td>0.282</td>
<td>0.058</td>
<td>0.008</td>
<td>0.092</td>
<td>0.029</td>
<td>1.000</td>
<td>0.000</td>
<td>0.410</td>
<td>0.293</td>
<td>0.307</td>
</tr>
<tr>
<td>1</td>
<td>0.118</td>
<td>0.079</td>
<td>0.081</td>
<td>0.029</td>
<td>0.016</td>
<td>0.135</td>
<td>0.834</td>
<td>0.000</td>
<td>0.000</td>
<td>0.156</td>
<td>0.187</td>
<td>0.225</td>
</tr>
<tr>
<td>2</td>
<td>0.072</td>
<td>0.070</td>
<td>0.063</td>
<td>0.018</td>
<td>0.005</td>
<td>0.073</td>
<td>0.001</td>
<td>0.000</td>
<td>1.000</td>
<td>0.310</td>
<td>0.159</td>
<td>0.191</td>
</tr>
<tr>
<td>3</td>
<td>0.409</td>
<td>0.422</td>
<td>0.574</td>
<td>0.896</td>
<td>0.971</td>
<td>0.700</td>
<td>0.135</td>
<td>0.000</td>
<td>0.000</td>
<td>0.124</td>
<td>0.361</td>
<td>0.276</td>
</tr>
</tbody>
</table>

Emission probabilities

0 → 1 → 2 → 3 → 4 → 5 → 6 → 7 → 8 → 9 → 10 → 11 → 12

‘hidden’ states
Parameter estimation when state sequence unknown

- **Viterbi training**

1. choose starting parameter values
 - must be valid probabilities; avoid 0 unless topology dictates
 - make them *biologically plausible* given state interpretation
2. find Viterbi highest weight paths for each sequence
3. estimate new emission and transition probs as above, *assuming* the Viterbi state sequence
4. iterate steps 2 and 3 until convergence
 - not guaranteed to occur – but nearly always does
5. repeat steps 1 – 4 with other starting values
 - choose values with highest total path score
• Viterbi training does not necessarily give ML estimates, but often are reasonably good
Baum-Welch training

• Special case of EM (‘expectation-maximization’) algorithm

• like Viterbi training, but
 – uses all paths, each weighted by its probability rather than just highest probability path.

• sometimes give significantly better results than Viterbi
 – e.g. for PFAM
Implementing Baum-Welch

– An edge in the WDAG contributes \textit{fractional} (or \textit{weighted}) \textit{counts} given by its posterior probability:

\[(\sum_{\text{all paths } p \text{ through edge } e} \text{weight}(p)) / (\sum_{\text{all paths } p} \text{weight}(p))\]

(Fractional counts are computed using forward-backward algorithm)
\[f(v)b(v) = \text{sum of the path weights of all paths through } v. \]

\[f(v')wb(v) = \text{sum of the path weights of all paths through the edge } (v',v) \]
Compute new param estimates

- $e_k(b)^{\wedge} = \frac{\text{frac. # times symbol } b \text{ emitted by state } k}{\text{frac. # times state } k \text{ occurs}}$

- $a_{kl}^{\wedge} = \frac{\text{frac. # times state } k \text{ followed by state } l}{\text{frac. # times state } k \text{ occurs}}$
 - (In denom., omit frac counts at last position of sequence)

where “frac. # times” is given by (*) for appropriate edge type (emission or transition)
– New Baum-Welch parameter estimates have higher likelihood
 • general property of EM algorithm
 • not true in general for Viterbi training

– Iterate: get series of estimates converging to a *local* maximum on likelihood surface
Search of parameter space

- ML estimates correspond by definition to *global* maximum;
- but there may be many *local* maxima, and EM or Viterbi search can get “trapped” in one

remedies:
- Consider multiple starts (multiple choices for starting parameters)
- use “reasonable values” to start search (e.g. unlikely transitions should be given small initial probabilities)
– Allow search to “jump” out of local maxima:
 • Add “noise” to counts at each iteration; gradually reduce the amount of noise
 • Use Viterbi-like training, but
 – sample paths probabilistically
 » (in retracing Viterbi path, choose edge at random according to its prob, rather than taking highest prob parent);
 – use “temperature” T to adjust probabilities;
 » initially with large T making all probs approximately equal;
 » then gradually reduce T
Probabilistic Viterbi Backtracking

reset all weights w to $w^{1/T}$. For large T ($>> 1$), this makes distinct w’s relatively close; for small T ($<< 1$), relatively far apart

choose parent v_i with probability $w_if(v_i) / f(v)$. For large T, all parents almost equally likely to be chosen; for small T, strongly favor largest (max) $w_if(v_i)$

given choice of paths, re-estimate weights; iterate