Today's Lecture

• PhastCons

PhastCons PhyloHMM

$$\mu = a_{cn}$$
 $\nu = a_{nc}$

Nonconserved

Conserved

• branch lengths:

- Expected # substitutions/site over corresponding evolutionary time period
- for neutral state, should reflect underlying mutation rate
- for conserved state: mutation rate \times scaling factor ρ
 - ρ = frac of mutations that escape purifying selection
 - $\rho \approx .33$ (for vertebrates)

from Siepel A. et al. (2005). Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 15:1034-50.

Some general issues in applying probability models, in the PhyloHMM context

- Is the model computable?
- Is the model 'reasonable'?
 - 2 states enough?
 - Markov condition on transition probabilities
- How good is the input data?
 - Alignability of neutral sequence
 - Accuracy of genome sequence alignments
- Are results reliable?
 - No true 'test set' instead, putative false positive rate,
 and 'biological plausibility' of findings

Alignment issues

- Multiz: progressive pairwise alignments
- accurate multiple genome alignment not a solved problem!
 - statistical assessment: Prakash & Tompa (2005, 2007, 2009)
 - ENCODE region alignment analyses: Margulies EH et al. 2007
 - major issues:
 - accurate gap placement (even for close species!!)
 - discrimination among paralogous sequences (e.g. repeats, duplications)
- inaccurate alignments cause
 - neutral rate to be overestimated
 - conserved segments to be overidentified
 - because more slowly mutating (or better aligned) neutral segments may be called conserved