Today’s Lecture

• Forward & forward/backward algorithms

• Baum-Welch training
More algorithms

• Can also use dynamic programming to find
 – sum of all product path weights
 = “forward algorithm” for probability of observed sequence
 – sum of all product path weights through particular node or particular edge
 = “forward/backward algorithm” to find posterior probabilities

• Now must use product weights and non-log-transformed probabilities
 – because need to add probabilities
• In each case, compute successively for each node (by increasing depth: left to right)
 – the sum of the weights of all paths ending at that node
 – N.B. paths are constrained to begin at the begin node!

• In forward/backward algorithm,
 – work through all nodes a second time, in opposite direction
 • i.e. in reverse graph – constraining paths to start in rightmost column of nodes
WDAG for 3-state HMM, length n sequence

weights are emission probabilities $e_k(b_i)$ for i^{th} residue b_i

weights are transition probabilities a_{kl}

b_{i-1} position $i-1$

b_i position i

b_{i+1} position $i+1$
For each vertex v, let $f(v) = \sum_{\text{paths } p \text{ ending at } v} \text{weight}(p)$, where
\text{weight}(p) = \textit{product} of edge weights in p. Only consider paths
starting at ‘begin’ node.

Compute $f(v)$ by dynam. prog:
\[f(v) = \sum_i w_i f(v_i), \]
where
v_i ranges over the parents of v, and
$w_i = \text{weight of the edge from } v_i \text{ to } v$.

Similarly for $b(v) = \sum_p$ beginning at v \text{weight}(p)$

The paths $\textit{beginning}$ at v are the ones \textit{ending} at v in the reverse (or inverted) graph
\[f(v)b(v) = \text{sum of the path weights of all paths through } v. \]

\[f(v')wb(v) = \text{sum of the path weights of all paths through the edge } (v',v) \]
• Numerical issues: multiplying many small values can cause underflow. Remedies:

 – *Scale* weights to be close to 1 (affects all paths by same constant factor – which can be multiplied back later); or

 – (where possible) use log weights, so can add instead of multiplying.

 – see Rabiner & Tobias Mann links on web page
 • & will discuss further in discussion section
Forward/backward algorithm

• Work through graph in forward direction:
 – compute and store $f(v)$

• Then work through graph in backward direction:
 – compute $b(v)$
 – compute $f(v) b(v)$ and $f(v)wb(v)$ as above, store in appropriate cumulative sums
 – only need to store $b(v)$ until have computed b’s at next position

• Posterior probability of being in state s at position i is $f(v) b(v) / \text{total sequence prob}$
 – where v is the corresponding graph node
Baum-Welch training

• Special case of EM (‘expectation-maximization’) algorithm

• like Viterbi training, but
 – uses *all* paths, each weighted by its probability rather than just highest probability path.

• sometimes give significantly better results than Viterbi
 – e.g. for PFAM
Implementing Baum-Welch

- An edge in the WDAG contributes *fractional* (or *weighted*) *counts* given by its posterior probability:

\[(*): \frac{\left(\sum_{\text{all paths } p \text{ through edge } e} \text{weight}(p) \right)}{\left(\sum_{\text{all paths } p} \text{weight}(p) \right)} \]

(Fractional counts are computed using forward-backward algorithm)
\[f(v)b(v) = \text{sum of the path weights of all paths through } v. \]

\[f(v')wb(v) = \text{sum of the path weights of all paths through the edge } (v',v) \]
- Compute new param estimates

 \[e_k(b)^\hat{=} = \frac{\text{frac. # times symbol } b \text{ emitted by state } k}{\text{frac. # times state } k \text{ occurs}} \]

 \[a_{kl}^\hat{=} = \frac{\text{frac. # times state } k \text{ followed by state } l}{\text{frac. # times state } k \text{ occurs}} \]

 - (In denom., omit frac counts at last position of sequence)

 where “frac. # times” is given by (*) for appropriate edge type (emission or transition)
– New Baum-Welch parameter estimates have higher likelihood
 • general property of EM algorithm
 • not true in general for Viterbi training

– Iterate: get series of estimates converging to a \textit{local} maximum on likelihood surface
Search of parameter space

• ML estimates correspond by definition to *global* maximum;

• but there may be many *local* maxima, and EM or Viterbi search can get “trapped” in one

• remedies:
 – Consider multiple starts (multiple choices for starting parameters)
 – use “reasonable values” to start search (e.g. unlikely transitions should be given small initial probabilities)
– Allow search to “jump” out of local maxima:
 • Add “noise” to counts at each iteration; gradually reduce the amount of noise
 • Use Viterbi-like training, but
 – sample paths probabilistically
 » (in retracing Viterbi path, choose edge at random according to its prob, rather than taking highest prob parent);
 – use “temperature” T to adjust probabilities;
 » initially with large T making all probs approximately equal;
 » then gradually reduce T
 – similar to Gibbs sampler
Probabilistic Viterbi Backtracking

reset all weights \(w \) to \(w^{1/T} \). For large \(T \) (\(>> 1 \)), this makes distinct \(w \)'s relatively close; for small \(T \) (\(<< 1 \)), relatively far apart

choose parent \(v_i \) with probability \(w_i f(v_i) / f(v) \). For large \(T \), all parents almost equally likely to be chosen; for small \(T \), strongly favor largest (max) \(w_i f(v_i) \)

given choice of paths, re-estimate weights; iterate