• Detecting sequence conservation with PhyloHMMs
 – PhastCons
• PhyloHMMs: Yang 1995; Felsenstein & Churchill 1996

 – basis of PhastCons conservation scores (UCSC genome browser)
Goal: starting from multiple genome sequence alignment, identify
– conserved regions (regions under purifying selection), against background of
– neutrally evolving regions
PhastCons PhyloHMM

• model:
 – 2-state HMM
 c: conserved state
 n: neutral (or nonconserved) state
 – emitted symbols are alignment columns
 – emission probabilities based on phylogenetic tree relating sequences
 – gaps in alignment treated as missing data
• branch lengths:
 – Expected # substitutions/site over corresponding evolutionary time period
 – for neutral state, should reflect underlying mutation rate
 – for conserved state: mutation rate × scaling factor ρ
 • $\rho = \text{frac of mutations that escape purifying selection}$
 • $\rho \approx .33$ (for vertebrates)
Probability calculations on evolutionary tree (lecture 11)

- Given:
 1. a set of observed residues at the leaves
 (a gap-free alignment column of the sequences)
 2. \(\{P_e(s \mid r)\} \) and \(\{P_{root}(r)\} \)

compute prob of observed residues

- Still exponentially many (in \(n_{anc} \)) possibilities for ancestral residues!
- But can use dynamic programming on a WDAG…
urnode

\[P_{\text{root}}(r) \]

\[P_{g}(s \mid r) \]

\[P_{e}(A \mid r) \]

\[P_{f}(G \mid r) \]

\[P_{h}(G \mid r) \]
cf. WDAG for 3-state HMM length n sequence (lecture 13)

weights are emission probabilities $e_k(b_i)$ for i^{th} residue b_i

weights are transition probabilities a_{kl}

b_{i-1}
position $i-1$

b_i
position i

b_{i+1}
position $i+1$
Prob calcs in HMMs (lecture 14):

For each vertex v, let $f(v) = \sum_{\text{paths } p \text{ ending at } v} \text{weight}(p)$, where weight($p$) = product of edge weights in p. Only consider paths starting at ‘begin’ node.

Compute $f(v)$ by dynam. prog: $f(v) = \sum_{i} w_i f(v_i)$, where v_i ranges over the parents of v, and $w_i = \text{weight of the edge from } v_i \text{ to } v$.

Similarly for $b(v) = \sum_{p \text{ beginning at } v} \text{weight}(p)$

The paths beginning at v are the ones ending at v in the reverse (or inverted) graph.
\[f(v)b(v) = \text{sum of the path weights of all paths through } v. \]

\[f(v')wb(v) = \text{sum of the path weights of all paths through the edge } (v',v) \]
urnode

\[P_{\text{root}}(r) \]

\[P_g(s \mid r) \]

\[P_e(A \mid r) \]

\[P_f(G \mid r) \]

\[P_h(G \mid r) \]
• Compute overall probability of leaf residues (nucleotides) by dynamic programming on WDAG:

• Let, for each node \(v \), \(f(v) = \text{prob of leaf nucs below } v \) (i.e. tree-descendants, or WDAG-ancestors, of \(v \)), given \(v \)’s nuc

\[f_{\text{left}}(v) = \text{prob of leaf nucs below and to left} \]

\[f_{\text{right}}(v) = \text{prob of leaf nucs below and to right} \]

then \(f(v) = f_{\text{left}}(v) f_{\text{right}}(v) \)
• Compute these values node-by-node, visiting (WDAG-)parents before children:
 – starting at leaf nodes (setting $f(v) = 1$), ending at urnode

$$f_{\text{left}}(v) = \sum_{\text{left} - u} w(u, v) f(u) \quad \text{where}$$

 – u ranges over parent nodes to the left
 – $w(u, v) = \text{weight on edge from } u \text{ to } v$

 ($= \text{mutation prob from } v \text{ to } u$)

Similarly for $f_{\text{right}}(v)$

$$f(v) = f_{\text{left}}(v) f_{\text{right}}(v)$$

 – For $v = \text{urnode}$, view all parents as being to ‘left’ and $f(v) = f_{\text{left}}(v)$

• $f(\text{urnode}) = \text{probability of the observed leaf nucs}$
• a ‘forward-backward’ calc gives posterior prob of having
 – a particular nuc at an ancestral node, or
 – a particular mutational change along an edge
• can use these as *fractional counts* to estimate P’s (EM algorithm)
Siepel *et al* evolutionary model

- single, reversible, infinitesimal mutation process across tree
- branches differ only in their lengths
- selection strength same across tree and sites