Today’s Lecture

• Karlin-Altschul theory

• Information theory
Context for Karlin-Altschul Theory for Maximal Segment Analysis

- Linked list, with labels attached to edges, e.g.
 - a sequence graph: labels = sequence residues
 - (ungapped) aligned pair of seqs: labels = possible alignment columns (pairs of residues)

- edge weights depend only on labels:
 - each label is assigned a weight $W(s) = w_s$
Karlin-Altschul Theory

- **Scoring systems**: What is appropriate scoring system (choice of edge weights) for detecting ‘target’ features in a biological sequence?
 - Answer: if symbol r occurs with freq
 - t_r in target segments, and
 - b_r elsewhere (‘background’)

 the best score is

 $$s_r = \log(t_r / b_r)$$

 - N.B. requires knowing (approximately) these frequencies!
 - Moreover, any ‘interesting’ scoring system can be expressed in above form
• **Statistical Significance:**

Expected # maximal segs of score $\geq S$ in ‘backgd’ sequence is

$$NKe^{-\lambda S}$$

where

- λ is a scaling factor to convert scores to LLR scale,
- $N =$ sequence length
- K is constant (depends on scoring system, but not on S or N)

• (Is above also true for maximal D-segments?)
Scoring systems
(Choice of edge weights in WLLs):

• assume *position independent* scores w, probabilities p_w

• reasonable constraints on weights are

 – at least one score is > 0:

 • if none are, then maximal scoring paths have score 0 & are trivial;

 – expected score is < 0:

 • if ≥ 0, then maximal scoring paths in random seqs will tend to extend through entire sequence
 – more suitable for ‘global’ than ‘local’ analyses

• above constraints \iff can assume weights are scaled LLRs (will show later)
• Can choose prob dist’ns P, Q, to optimize discrimination of regions to be detected (like an LLR test):

 – P corresponds to backgd dist’n
 • sequence graph: average composition of sequences being scanned
 • pairwise alignment: random pairs of residues

 – Q corresponds to target dist’n
 • sequence graph: composition of regions to be detected – e.g. to detect hydrophobic regions in protein, use residue freqs in observed hydrophobic regions
 • pairwise alignment: homologous residue pairs in evolutionarily related sequences
Example where LLR weights *aren’t* a natural choice: quality trimming of sequencing reads

- assume have error probs for base calls:
 - \(e_i \) = error prob for \(i \)-th base call in read, \(1 \leq i \leq N \) where \(N \) = read length
- want to trim read to that part having error rate \(\leq \) a specified target rate
 - e.g. .05
- construct linked-list directed graph with \(N \) edges, & set
 \[w_i = 0.05 - e_i \]
 as weight on \(i \)-th edge
- highest weight path in graph has property that any segment extending path has negative score
 - i.e. avg error rate in extension \(> .05 \).
extension must have neg score

maximum-scoring segment

extension must have neg score
Scores on Probability Spaces

- A *scoring system* on a prob space \((S,P)\) is function \(W: S \rightarrow \mathbb{R} \) (\(\mathbb{R} = \text{real numbers}\)).
 - \(W(s)\) is called the *score* (or *weight*) of \(s\).

- Example: for any prob dist’n \(Q \neq P\) on \(S\), the LLR score \(W(s) = \log_b(Q(s)/P(s))\).

 This has properties (writing \(p_s\), \(q_s\), \(w_s\) for \(P(s)\), \(Q(s)\), \(W(s)\))

1. \(w_s > 0\) for at least one \(s\)
 - otherwise \(q_s \leq p_s\) for all \(s\), and \(q_s < p_s\) for at least one \(s\) since \(Q \neq P\); but then \(\sum_s q_s < \sum_s p_s = 1\), so \(Q\) is not a probability distribution.

2. \(\sum_s p_s w_s < 0\) (by the information inequality)
• above properties also hold for “scaled” LLR
\[\log_b \left(\frac{q_s}{p_s} \right) / \lambda \] where \(\lambda > 0 \).

• conversely, any scoring system \(W \) satisfying above two properties is of form
\[\log_b \left(\frac{q_s}{p_s} \right) / \lambda, \] for a unique \(\lambda \) and \(Q \) (\(\lambda \) depends on \(b \)):

Proof: Take \(b = e \) for convenience.

\(\lambda W \) is a LLR \(\iff e^{\lambda w_s} = q_s / p_s \) for some prob dist’n \(Q \)
\(\iff \sum_s p_s e^{\lambda w_s} = 1 \)

\[\therefore \] if define
\[f(\lambda) = \sum_s p_s e^{\lambda w_s} \]
then it is enough to show \(f(\lambda) = 1 \) for a unique \(\lambda > 0 \), because

\[q_s = p_s e^{\lambda w_s} \]
• $f(\lambda) = 1$ for $\lambda = 0$, $f(\lambda) > 0$ for all λ
• the derivative $f''(\lambda) = \sum_s p_s w_s e^{\lambda w_s}$, so $f''(0) = \sum p_s w_s < 0$,
 i.e. f decreasing at 0
• $\therefore \exists \mu > 0$ with $f(\mu) < f(0) = 1$
• $f(\lambda) \to \infty$ as $\lambda \to \infty$ since by assumption some $w_s > 0$
• $\therefore f(\lambda) = 1$ for some $\lambda > \mu > 0$
• f is convex
 – i.e. for any λ_1 and λ_2, line segment from the point $(\lambda_1, f(\lambda_1))$ to $(\lambda_2, f(\lambda_2))$ lies above graph of $f(\lambda)$
 since its terms $p_s e^{\lambda w_s}$ are convex,
• $\therefore \exists$ at most one $\lambda > 0$ with $f(\lambda) = 1$
 – otherwise graph would have ≥ 3 points on line $y = 1$

– this completes the proof.
Karlin-Altschul theory (cont’d)

• expected # of maximal segments with scores \(\geq a \), in ‘bkgd’ sequence of length \(N \) is

\[N Ke^{-\lambda a} \]

• where \(\lambda, K \) are constants depending on scoring system
 – \(\lambda \) (as discussed previously) rescales scores to be LLRs

• method assumes sequence is very long
 – i.e. doesn’t allow for “edge effects”
Intuition (not a proof!) for K-A formula

• Consider the space of sequences of a *fixed length* $n \leq N$
 – (think of these as the possible subsequences of length n starting at a particular location within a larger sequence of length N.)
• Assume LLR scoring system ($\lambda = 1$):
 – score(s) = $\log\left(\frac{Q(s)}{P(s)}\right)$, for any sequence s of length n, where
 • $P = \text{backgd dist’n}$
 • $Q = \text{target dist’n}$
• What is the total probability of all sequences of score $\geq a$?

\[
\log(Q(s) / P(s)) \geq a
\]
\[
\Rightarrow Q(s) / P(s) \geq e^a
\]
\[
\Rightarrow P(s) \leq e^{-a} Q(s)
\]

Summing over all such s:

\[
\sum_s P(s) \leq e^{-a} \sum_s Q(s) = k e^{-a} = k e^{-\lambda a}
\]

for some $k \leq 1$
Intuition cont’d

• (Very) roughly speaking, averaging over possible sequence lengths $n \leq N$, and summing over the N possible start points within a sequence of length N, get $NKe^{-\lambda a}$

• A better (but still incomplete) argument is given in the following slides.
Scores on Probability Spaces (cont’d)

• convenient to
 – assume W takes on integral values
 • rescale and round
 – (loss of precision can be made as small as desired by taking scaling factor large enough);
 – replace original prob space by one induced on the integers by the random variable W – so
 • the sample points are integers
 • prob associated to the integer k is $\sum_{s:w_s=k} p_s$
 • the weight function is now the identity
 – i.e. weight associated to k is k.
Maximal Segments

any extension must have negative score

maximum-scoring segment

any extension must have negative score
• want prob that maximal segment of score $\geq a$ starts at position i
• this requires two *independent* events to occur:
 1. cumulative score
 - starting from value of 0 and
 - adding successive scores while moving to the right from pos’n i,
 must reach value $\geq a$ before reaching value < 0.
Call prob of this P_1
Moving to right, cumulative score reaches $ \geq a $ before negative value
2. for any $j < i$, score of segment from j to $i - 1$ is < 0

Equivalently,

- starting from score 0 and
- adding successive scores while moving to *left* from pos’n $i - 1$
- (and not resetting neg scores to 0)

the score remains < 0. This requires that

- the score k at position $i - 1$ is negative
- cumulative score moving from $i - 1$ leftward never gets back to 0 from k

Call prob of this P_2
Moving to left, cumul score always < 0
Analogy to random walk/gambler’s ruin

- cumulative score, counting from particular position in sequence, corresponds to
 - total distance walked, or
 - gambler’s net worth

- with each step having probability p_k of moving distance k
 - k positive \Rightarrow forwards
 - k negative \Rightarrow backwards

- stop when reach
 - value < 0 (out of money!); or
 - value $\geq a$

“random walk with absorbing barriers at 0 and a”
• estimate \(P_1 \) and \(P_2 \) and \textit{multiply} (since cond’ns are independent) to get

\[
\text{prob (max segment of score } \geq a \text{ starts at } i)\
\]
Estimating P_1

- consider a more general situation:
 - assume start with score $= z$ (an integer) instead of 0,
 - again consider cum score moving to right from position i
 - what is prob u_z of getting to target score $\geq a$ before getting to < 0?

- $P_1 = u_0$
Success (Reach \(\geq a \) First)
Failure (Reach < 0 First)

Cumulative score

Position in sequence

0 i z a
Non-rigorous derivation

• intuition (not a proof!) for why P_1 should be approximately $e^{-\lambda a}$:

for any $a > b$, let

$P(a | b) = \text{prob that, starting from cumul score = } b$, eventually reach cumul score a

• (ignoring whether drop below 0 first – which is one reason why this isn’t a proof!)

Then

• $P(a | b) = P(a - b | 0)$
• $P(a + a' | 0) = P(a' | 0) P(a + a' | a') = P(a' | 0) P(a | 0)$
\[\therefore \text{the function } a \rightarrow P(a \mid 0) \]

takes sums to products

\[\therefore P(a \mid 0) = e^{-\mu a} \text{ for some } \mu \]
What is μ?

Consider first step, starting at 0:

prob it has size k is p_k

Considering all possible sizes of 1st step:

$$P(a \mid 0) = \sum_k p_k \ P(a \mid k) = \sum_k p_k \ P(a - k \mid 0)$$

$$\Rightarrow e^{-\mu a} = \sum_k p_k \ e^{-\mu (a-k)}$$

$$\Rightarrow (\text{cancelling } e^{-\mu a}) \ 1 = \sum_k p_k \ e^{\mu k}$$

$$\Rightarrow \mu = \lambda \ (\text{by definition of } \lambda)$$

$$\Rightarrow P(a \mid 0) = e^{-\lambda a}$$
Information Theory

• Gives useful concepts & terminology for describing how much “better” one probability model is than another.
• Gives interesting way to think about 2d law of thermodynamics
• Important in coding theory / data compression
• Suggests a useful approach (Minimum Description Length principle) to avoid overfitting data
Fig. 1. Some aligned sequences and their sequence logo. At the top of the figure are listed the 12 DNA sequences from the P_L and P_R control regions in bacteriophage lambda. These are bound by both the cl and cro proteins [16]. Each even numbered sequence is the complement of the preceding odd numbered sequence. The sequence logo, described in detail in the text, is at the bottom of the figure. The cosine wave is positioned to indicate that a minor groove faces the center of each symmetrical protein. Data which support this assignment are given in reference [17].
Entropy

- The *information theoretic entropy*—or *Shannon entropy*
of a probability space \((S,P)\) is

\[
H_b(P) = \sum_{s \in S} P(s) \log_b \left(\frac{1}{P(s)} \right) = -\sum_{s \in S} P(s) \log_b (P(s))
\]

- Terms with \(P(s) = 0\) are set = 0
- We usually take \(b = 2\)
 - in which case entropy is in “bits”

- \(H_b(P) \geq 0\)
 - because each term \(P(s) \log_b (1/P(s)) \geq 0\)

\(H_b(P) = 0\) only for trivial dist’n concentrated in single point
Entropy (cont’d)

• Intuitively, the entropy measures how “spread out” the probability distribution is.
 – for $P(s)$ close to 0, or to 1, $P(s)\log_b(1/P(s))$ is close to 0.
Relative Entropy

• The *relative entropy* or *Kullback-Leibler distance* for two dist’ns \(P \) and \(Q \) on \(S \) is
 \[
 D_b(P \| Q) \equiv \sum_{s \in S} P(s) \log_b (P(s) / Q(s))
 \]
 (the expected value of the loglikelihood ratio).
 – if \(P(s) = 0 \), set corresponding term = 0
 – if \(P(s) \neq 0 \) but \(Q(s) = 0 \), \(D_b(P \| Q) \) is taken to be \(+\infty\).

• By information inequality, \(D_b(P \| Q) \geq 0 \), with equality only if \(P = Q \).

• In general
 \[
 D_b(P \| Q) \neq D_b(Q \| P)
 \]
(Let $p_s = P(s)$, for $s \in S$). For any

- prob dist’n $\{p_s\}_{s \in S}$, and
- $\{q_s\}_{s \in S}$ satisfying $q_s \geq 0$ and $\Sigma_s q_s \leq 1$

 - e.g. $\{q_s\}$ a probability distribution

we have

$$\Sigma_s p_s \ln(q_s) \leq \Sigma_s p_s \ln(p_s)$$

with equality only if $q_s = p_s$ for all s (‘$\forall s$’)

Proof. \(\ln(x) \leq x - 1 \) for all \(x > 0 \), with equality only for \(x = 1 \). (See next slide).

\[
\begin{align*}
\therefore \quad \sum_s p_s \ln(q_s) - p_s \ln(p_s) &= \sum_s p_s \ln(q_s / p_s) \\
&\leq \sum_s p_s (q_s / p_s - 1) \quad \text{(with equality only if } q_s = p_s \forall s) \\
&= \sum_s q_s - \sum_s p_s \leq 1 - 1 = 0.
\end{align*}
\]

So \(\sum_s p_s \ln(q_s) \leq \sum_s p_s \ln(p_s) \), with equality only if \(q_s = p_s \forall s \).
\[\ln(x) \leq x - 1 \]
Information Inequality (cont’d)

• Since \log_b for any base b is related to \ln by
 \[\log_b (x) = \frac{\ln(x)}{\ln(b)} \]
 the information inequality holds for \log_b as well:
 \[\sum_s p_s \log_b(q_s) \leq \sum_s p_s \log_b(p_s) \]

• Equivalent formulation: the entropy $H_b(\{p_s\})$ satisfies
 \[H_b(\{p_s\}) = -\sum_s p_s \log_b(p_s) \leq -\sum_s p_s \log_b(q_s) = \sum_s p_s \log_b(1/q_s) \]
 for any dist’n $\{q_s\}$.
Distributions with Maximum Entropy

• For a sample space with \(n \) elements,
 – largest possible entropy (of any prob dist’n) is \(\log_b(n) \), and
 – this attained only for prob dist’n \(q_s = 1/n \) for each \(s \):

• **Proof.** Take arbitrary prob dist’n \(\{p_s\} \), and \(\{q_s\} \) as above. Then

\[
H_b(\{p_s\}) \leq \sum_s p_s \log_b(1/q_s) = \sum_s p_s \log_b(n) = \log_b(n)
\]

and

\[
H_b(\{q_s\}) = \sum_s q_s \log_b(1/q_s) = \sum_s q_s \log_b(n) = \log_b(n)
\]
Maximum Entropy Subject to Constraint: Boltzmann Distribution

- In physics,
 - S may correspond to the fixed set of *states* of a physical system,
 - the prob dist’n $P = \{p_s\}_{s \in S}$ may vary, subject to a *constraint* of the form
 \[
 \sum_s p_s E(s) = E
 \]
 where E and $\{E(s)\}$ are fixed (e.g. the expected energy of the system, and the energies of individual states respectively).
 - Note that
 \[
 \min_s E(s) = \sum_{t \in S} p_t (\min_s E(s)) \leq \sum_t p_t E(t) \leq \sum_t p_t \max_s E(s) = \max_s E(s).
 \]
 So (since the middle term = E)
 \[
 \min_s E(s) \leq E \leq \max_s E(s)
 \]
- **We seek** \(\{p_s\}\) constrained as above for which the entropy $H(\{p_s\})$ is maximized.
Boltzmann Distribution (cont’d)

• Consider \(\{q_s\} = \{q_s^{(r)}\} \) of the form \(q_s = c_r e^{-rE(s)} \) where \(r \) is a constant and \(c_r = 1/ (\sum_s e^{-rE(s)}) \) is determined by the requirement that \(\{q_s\} \) be a prob dist’n.

• We first want to show that there exists an \(r \) such that \(\{q_s^{(r)}\} \) satisfies the above constraint on \(p \), i.e. \(\sum_s q_s^{(r)} E(s) = E \)

• Write \(q_s^{(r)} = c_r e^{-rE(s)} = c_r e^{-r (\min E(s))} e^{-r (E(s)-\min E(s))} \). As \(r \to +\infty \), the last factor \(e^{-r (E(s)-\min E(s))} \)

 = 1 if \(E(s) = \min_s E(s) \)

 \(\to 0 \) if \(E(s) \neq \min_s E(s) \) since then the exponent of \(e \) becomes large and negative.

• Consequently \(\{q_s^{(r)}\} \) converges to a dist’n \(\{q_s^{(\infty)}\} \) which satisfies \(q_s^{(\infty)} = 0 \) for any \(s \) for which \(E(s) \neq \min_s E(s) \). Then \(\sum_s q_s^{(\infty)} E(s) = \min_s E(s) \).
Boltzmann Distribution (cont’d)

• By a similar argument, as \(r \to -\infty \), \(\{q_s^{(r)}\} \) converges to a dist’n \(\{q_s^{(-\infty)}\} \) which satisfies \(q_s^{(-\infty)} = 0 \) for any \(s \) for which \(E(s) \neq \max_s E(s) \); and \(\sum_s q_s^{(-\infty)} E(s) = \max_s E(s) \).

• Therefore since \(\sum_s q_s^{(r)} E(s) \) is continuous in \(r \) it takes on all values between \(\min_s E(s) \) and \(\max_s E(s) \). In particular \(\min_s E(s) \leq E \leq \max_s E(s) \), so we can find a value of \(r \) such that

\[
\sum_s q_s^{(r)} E(s) = E
\]

i.e. \(\{q_s^{(r)}\} \) satisfies the constraint.

• Then by the information inequality and the constraint on \(\{p_s\} \),

\[
H(\{p_s\}) \leq \sum_s p_s \log \left(\frac{1}{q_s} \right) = \sum_s p_s \left(r \ E(s) - \log(c_r) \right)
= r \ E - \log(c_r)
\]
Boltzmann Distribution (cont’d)

- But also \(H(\{q_s^{(r)}\}) = \sum_s q_s^{(r)} \log (1/q_s^{(r)}) \)
 \[= \sum_s q_s^{(r)} (r \, E(s) - \log(c_r)) = r \, E - \log(c_r) \geq H(\{p_s\}) \]

- So \(\{q_s\} \) of the form \(q_s = c_r e^{-rE(s)} \) (for an appropriate \(r \) which we have not computed explicitly!) has the maximum entropy of all prob dist’ns \(\{p_s\} \) satisfying the constraint \(\sum_s p_s \, E(s) = E \).

- For this distribution, the probability associated to the state \(s \) declines exponentially in \(E(s) \). This is sometimes called the *Boltzmann distribution*, after its discoverer in the context of classical thermodynamics.
Basic Coding Theory/
Data Compression

• a **binary source code** for a prob space \((S,P)\) is a mapping \(C: S \rightarrow \{\text{strings of 0’s and 1’s}\}\)
 – \(C(s)\) is called the codeword corresponding to \(s\).

• Given \(C\), and any “text” or string \(s_1s_2\cdots s_n\) of elements in \(S\)
 – \(s_i \in S\) for each \(i\)

 can create an encoded string \(C(s_1)C(s_2)\cdots C(s_n)\) (of 0’s and 1’s)
 – i.e. replace each \(s_i\) by its codeword.
Uniquely Decodable Codes

• *C* is *uniquely decodable* if distinct strings from *S* always give distinct encoded strings
 \[\Rightarrow \text{can uniquely reconstruct the original message from the encoded message} \]

• *C* is a *prefix code* or *instantaneous code* if no codeword is a prefix of any other codeword.
• Examples: let S have three elements: 1, 2, 3. Then
 – $C(1) = 001$, $C(2) = 1$, $C(3) = 01$ is a prefix code on S.
 – $C(1) = 0$, $C(2) = 1$, $C(3) = 01$ is not a prefix code, because $C(1)$ is a prefix of $C(3)$.
 • Is it uniquely decodable?
 – Is $C(1) = 001$, $C(2) = 1$, $C(3) = 10$ a prefix code?
 • Is it uniquely decodable?

• ASCII 8-bit code for representing alphabet & symbols is prefix code
 • because all codewords have same length!
• UTF-8 is variable-width (one to four bytes) encoding of Unicode characters that includes ASCII & is a prefix code
• Prefix codes are uniquely decodable:
 – can decode the prefix-coded text by
 • reading through it in order, and
 • replacing each codeword by its corresponding symbol as soon as its end is recognized (whence “instantaneous”).
• For other types of uniquely decodable codes, may need to read whole text before decoding is possible.
Codewords as Paths

- Codewords correspond to paths from root in a *full* binary rooted tree of sufficient depth.
 - Each such path is uniquely determined by its end node.
- Code is a prefix code \iff no end node is ancestor or descendant of any other end node:

The three codewords are 001, 01, and 1
• Codewords in a prefix code are like the series of yes-no answers to “20 questions”, that uniquely determine a particular $s \in S$
Code Lengths

• For a code \(C \), let \(l_C(s) = \text{length of } C(s) \), for \(s \in S \).
• Equivalently, \(l_C(s) = \text{depth of the end node } v_s \) of the corresponding path.
Kraft Inequality

• Let \(l(s) \) assign positive integer to each \(s \in S \). Then

\[
l = l_C \quad \text{for some prefix code } C
\]

\[\iff \sum_{s \in S} 2^{-l(s)} \leq 1\]

• \textit{Example}: let \(S = \{a, b, c\} \). Then can the following correspond to prefix codes?

 – \(l(a) = 1, \ l(b) = 1, \ l(c) = 1 \) ?
 – \(l(a) = 1, \ l(b) = 1, \ l(c) = 2 \) ?
 – \(l(a) = 1, \ l(b) = 2, \ l(c) = 2 \) ?
Proof of Kraft inequality

Consider full binary rooted tree of depth $n \geq \max_{s \in S} l(s)$. Number *leaves* (= nodes of depth n) consecutively from left to right starting with 1:
Proof of Kraft inequality (cont’d)

– For each node \(v \) in the tree, if \(\text{depth}(v) = m \) then

 • \(v \) has \(2^{n-m} \) descendants among the \(2^n \) leaves; and

 • these are numbered consecutively from \(c \) to \(d \), such that \(d \) is divisible by \(2^{n-m} \)

– Conversely,

 a set of \(2^{n-m} \) leaves consecutively numbered from \(c \) to \(d \), & such that \(d \) is divisible by \(2^{n-m} \)

 is the set of depth \(n \) descendants for a unique node \(v \) of depth \(m \).

– If neither \(v_1 \) and \(v_2 \) is an ancestor of the other, then descendants of \(v_1 \) and \(v_2 \) are disjoint sets.
Proof of Kraft inequality (cont’d)

⇒: Assume \(l = l_C \) for a prefix code \(C \).

- \(C \) a prefix code ⇒ end nodes \(v_s \) for the corresponding paths have disjoint sets of descendants
- Since \(v_s \) has \(2^{n-l(s)} \) descendants in \(n^{th} \) row, \(\sum_{s \in S} 2^{n-l(s)} \leq 2^n \).
- Cancelling \(2^n \), get \(\sum_{s \in S} 2^{-l(s)} \leq 1. \)
Proof of Kraft inequality (cont’d)

\(\iff \): Conversely suppose \(\sum_{s \in S} 2^{-l(s)} \leq 1 \).

- Then \(\sum_{s \in S} 2^{n-l(s)} \leq 2^n \).
- Arrange \(l(s) \)'s in increasing order
- Choose successive contiguous subsets \(V_s \) among leaves, starting from far left, such that \(|V_s| = 2^{n-l(s)} \).
- Each such subset = \{depth \(n \) descendants\} for a unique node \(v_s \) in the tree, with \(\text{depth}(v_s) = l(s) \).
- The mapping \(s \to v_s \) then defines a prefix code \(C \) with \(l = l_C \)
Entropy & Expected Code Length

• The *expected length* $L(C)$ of a code C is given by

$$L(C) = \sum_s p_s l_C(s)$$

i.e. the expected value of the random variable l_C

• $L(C) =$ “expected # yes-no questions necessary to specify $s \in S$ using C”

 = avg # bits needed to encode a “character” $s \in S$, for text where each s used with freq p_s
• For any prefix code, $L(C) \geq H_2(P)$:

Proof. Define $q_s = 2^{-l(s)}$.
– from Kraft inequality, $\sum_{s \in S} q_s \leq 1$, so
– apply information inequality:

$$H_2(\{p_s\}) \leq \sum_s p_s \log_2(1/q_s) = \sum_s p_s \ l(s) = L(C)$$
Conversely, can find prefix code C such that $L(C) < H_2(P) + 1$:

Proof. Let $l(s) = \text{smallest integer } \geq \log_2(1/p_s)$.
- Then $2^{-l(s)} \leq p_s$, so $\sum_{s \in S} 2^{-l(s)} \leq \sum_s p_s = 1$.
- By Kraft inequality \exists prefix code C with $l = l_C$

Then

$L(C) - H_2(P) = \sum_s p_s (l(s) - \log_2(1/p_s)) < \sum_s p_s (1) = 1$
– N.B.

• C chosen as above (the *Shannon code*) need not be optimal, in sense of having lowest possible $L(C)$.
• A construction of an optimal code is due to Huffman.
Interpretation of Entropy

\[H_2(P) \] is (approximately!) the expected code length for an optimal prefix encoding of the probability space \((S, P)\)
Uniquely Decodable Codes (cont’d)

- All uniquely decodable codes C satisfy Kraft inequality
 - for proof, see e.g. Cover & Thomas, *Elements of Information Theory*, sec. 5.5.
- Therefore \exists prefix code D with the same codeword lengths as C:
 \[
 l_C(s) = l_D(s) \text{ for all } s \in S.
 \]
- \therefore expected codeword length $L(C)$ is same as for optimal prefix code
- in particular
 \[
 L(C) = \sum_s p_s l_C(s) \geq H_2(P).
 \]
• \(H_2(P) \cong \text{minimum avg \# bits (0’s and 1’s), needed per character } s \in S \) to encode texts
 – for the best possible uniquely decodable code.
 – the relation becomes exact if more general codes (arbitrary invertible maps from texts to bit strings) are allowed.
Entropy and Information

• By above, \(H_2(P) \approx \# \) bits needed “on average” to unambiguously specify elements of \(S \).
• \(\therefore \) Entropy = average “uncertainty” before an element of \((S,P)\) is specified.
• Information corresponds to reduction in uncertainty.
 – Before elt of \(S \) is specified, the uncertainty is \(H(P) \);
 – after it is specified, uncertainty is 0.
 – So the amount of information gained is \(H(P) - 0 = H(P) \).
 – So entropy happens to equal information in this instance;
 • not in general though!
• $H_2(P) = \text{avg amount of information per character}$ in a text based on (S, P).
Minimum Description Length Principle (MDL)

• Method for choosing among probability models
 – suggested by coding theory & parsimony principle (Occam’s razor)
 – intent is to avoid overfitting

• idea: minimize total # bits needed to describe data,\n including bits necessary to represent the model (parameter values)

• ‘best’ model for data is one with minimum # bits
MDL

- Avg # bits needed to represent data, given model:
 \[B_{data} = H_2(P) = \sum_{s \in S} P(s) \log_2(1/P(s)) \] (i.e. entropy)
 - to represent a specific dataset \(s \), given the prob model \(P \):
 \[\log_2(1/ P(s)) = - \log_2(P(s)) \text{ bits} \]
 - (Shannon encoding – which is close to optimal)

- # bits needed to specify model:
 \[B_{param} \approx (# \text{ parameters}) \times \text{precision} \]
 - some non-trivial issues here: can be many possible ways of ‘specifying’ parameters!

- Minimize \(B_{data} + B_{param} \) over prob models & precisions
 \(\Leftrightarrow \) maximizing the (adjusted) relative entropy.
Avoiding overfitting – other approaches

• Most methods to avoid overfitting involve similar tradeoff:
 – in choosing among models, balance
 • goodness of fit to training data
 • penalty for complexity of the model

• Other such methods (besides MDL) include:
 – AIC (Akaike information criterion)
 – BIC (Bayesian information criterion)
• A different, commonly used approach:
 – train multiple models on the ‘training’ data
 – then choose one that does best on separate (‘test’) data
• This is wrong: test data is being used for training !!
 – ‘training’ is any procedure for choosing among models,
 not only ‘estimating parameters’ (a particular type of choice)

So still ∃ major risk of overfitting
• Can hold out part of test set for final, indep test
 – but performance in final test likely not as good
Relative Entropy

• The *relative entropy* or *Kullback-Leibler distance* for two dist’ns P and Q on S is

$$D_b(P \parallel Q) \equiv \Sigma_{s \in S} P(s) \log_b(P(s) / Q(s))$$

(the expected value of the loglikelihood ratio).

– if $P(s) = 0$, set corresponding term = 0
– if $P(s) \neq 0$ but $Q(s) = 0$, $D_b(P \parallel Q)$ is taken to be $+\infty$.

• By information inequality, $D_b(P \parallel Q) \geq 0$, with equality only if $P = Q$.

• In general

$$D_b(P \parallel Q) \neq D_b(Q \parallel P)$$
• For site dist’n P and background dist’n Q,
 \[- D(P \| Q) = \text{the mean of site score distribution} \]
 i.e. the sum, over sequences, of prob of seq times its LLR weight.

• Since $P(s) = \prod_{1 \leq i \leq n} P_i(s_i)$ and $Q(s) = \prod_{1 \leq i \leq n} Q_i(s_i)$,
 \[
 D(P \| Q) = \sum_{s \in S} (\prod_{1 \leq i \leq n} P_i(s_i)) \sum_{1 \leq j \leq n} (\log(P_j(s_j)) - \log(Q_j(s_j)))
 \]
 which simplifies to
 \[
 \sum_{1 \leq i \leq n} \left(\sum_{r \in A} P_i(r)(\log(P_i(r)) - \log(Q_i(r))) \right) = \sum_{1 \leq i \leq n} D(P_i \| Q_i)
 \]
3’ Splice Sites – *C. elegans*

Intron Exon

Branch site “smear”
Weight Matrix – 3’ Splice Sites
(C. elegans)

SITE FREQUENCIES:

<p>| | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.400</td>
<td>0.429</td>
<td>0.282</td>
<td>0.058</td>
<td>0.008</td>
<td>0.029</td>
<td>1.000</td>
<td>0.000</td>
<td>0.410</td>
<td>0.293</td>
<td>0.307</td>
</tr>
<tr>
<td>C</td>
<td>0.118</td>
<td>0.079</td>
<td>0.081</td>
<td>0.029</td>
<td>0.016</td>
<td>0.135</td>
<td>0.834</td>
<td>0.000</td>
<td>0.000</td>
<td>0.156</td>
<td>0.187</td>
</tr>
<tr>
<td>G</td>
<td>0.072</td>
<td>0.070</td>
<td>0.063</td>
<td>0.018</td>
<td>0.005</td>
<td>0.073</td>
<td>0.001</td>
<td>0.000</td>
<td>1.000</td>
<td>0.310</td>
<td>0.159</td>
</tr>
<tr>
<td>T</td>
<td>0.409</td>
<td>0.422</td>
<td>0.574</td>
<td>0.896</td>
<td>0.971</td>
<td>0.700</td>
<td>0.135</td>
<td>0.000</td>
<td>0.000</td>
<td>0.124</td>
<td>0.361</td>
</tr>
</tbody>
</table>

BACKGROUND FREQUENCIES:

<p>| | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.321</td>
</tr>
<tr>
<td>C</td>
<td>0.179</td>
</tr>
<tr>
<td>G</td>
<td>0.179</td>
</tr>
<tr>
<td>T</td>
<td>0.321</td>
</tr>
</tbody>
</table>

WEIGHTS:

<p>| | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.32</td>
<td>0.42</td>
<td>-0.18</td>
<td>-2.46</td>
<td>-5.29</td>
<td>-1.79</td>
<td>-3.45</td>
<td>1.64</td>
<td>-99.00</td>
<td>0.36</td>
<td>-0.13</td>
</tr>
<tr>
<td>C</td>
<td>-0.60</td>
<td>-1.18</td>
<td>-1.15</td>
<td>-2.64</td>
<td>-3.51</td>
<td>-0.41</td>
<td>2.22</td>
<td>-99.00</td>
<td>-99.00</td>
<td>-0.20</td>
<td>0.06</td>
</tr>
<tr>
<td>G</td>
<td>-1.31</td>
<td>-1.35</td>
<td>-1.51</td>
<td>-3.35</td>
<td>-5.23</td>
<td>-1.30</td>
<td>-6.93</td>
<td>-99.00</td>
<td>2.48</td>
<td>0.79</td>
<td>-0.17</td>
</tr>
<tr>
<td>T</td>
<td>0.35</td>
<td>0.39</td>
<td>0.84</td>
<td>1.48</td>
<td>1.60</td>
<td>1.12</td>
<td>-1.24</td>
<td>-99.00</td>
<td>-99.00</td>
<td>-1.37</td>
<td>0.17</td>
</tr>
</tbody>
</table>
3’ Splice Sites

WEIGHTS:

A 0.32 0.42 -0.18 -2.46 -5.29 -1.79 -3.45 1.64 -99.00 0.36 -0.13 -0.06
C -0.60 -1.18 -1.15 -2.64 -3.51 -0.41 2.22 -99.00 -99.00 -0.20 0.06 0.33
G -1.31 -1.35 -1.51 -3.35 -5.23 -1.30 -6.93 -99.00 2.48 0.79 -0.17 0.10
T 0.35 0.39 0.84 1.48 1.60 1.12 -1.24 -99.00 -99.00 -1.37 0.17 -0.22

Position-specific Relative Entropy:

 0.11 0.16 0.24 1.05 1.43 0.47 1.57 1.64 2.48 0.19 0.01 0.01

e.g. 0.11 = .400 (.32) + .118 (-.60) + .072 (-1.31) + .409 (.35)

Total Relative Entropy (Sum of position-specific values) = 9.35
• Note pos-specific relative entropy always ≥ 0
 = 0 only if site freqs *exactly* equal backgd freqs.
 • will rarely happen, even far from site (when we’re in backgd).

• So rel entropy increases indefinitely as window size increases
 – even when no biological information being added.

• For large enough window get spuriously clean score separation between training seqs and other seqs
 – overfitting.
Position-Specific Relative Entropy: 3’ Splice Sites

3 bits

2 bits

1 bit

branch site
Predicted vs. Observed Distributions (3’ site model): True 3’ Sites

Relative entropy: 10.85 bits
Similarly,

\[D_b(Q \parallel P) = \sum_{s \in S} Q(s) \log_b(Q(s) / P(s)) \]
\[= - \sum_{s \in S} Q(s) \log_b(P(s) / Q(s)) \]

= negative of the mean of the dist’n of the LLR scores in background sequence (the “null distribution”);

– but must eliminate \(s \) for which \(P(s) = 0 \).
Predicted vs. Observed Distributions
(3’ site model):
(Simulated) Random Independent

-40 -30 -20 -10 0 10 20 30

Random Ind Predicted

- Random Ind • Predicted
Sequence Logos

- Schneider and Stephens (NAR 18, 6097-6100, 1990)—see http://www-lmmb.ncifcrf.gov/~toms/sequencelogo.html
- At ith position, each residue r gets height
 $$P_i(r)D(P_i \| Q_i)$$
- Schneider
 - takes Q_i to be the equal-frequency model
 - subtracts small-sample correction from $D(P_i \| Q_i)$
- Gorodkin, Heyer, Brunak and Stormo (CABIO 13, 583-586, 1997)
 - use unequal frequency Q_i
 - allow for gaps
 - take height either proportional to $P_i(r)$ (as above) or to $P_i(r)/Q_i(r)$, letter upside down if $P_i(r) < Q_i(r)$.
From http://www-lmmb.ncifcrf.gov/~toms/sequencelogo.html

Fig. 1. Some aligned sequences and their sequence logo. At the top of the figure are listed the 12 DNA sequences from the PL and PR control regions in bacteriophage lambda. These are bound by both the cl and cro proteins [16]. Each even numbered sequence is the complement of the preceding odd numbered sequence. The sequence logo, described in detail in the text, is at the bottom of the figure. The cosine wave is positioned to indicate that a minor groove faces the center of each symmetrical protein. Data which support this assignment are given in reference [17].
from http://www.dna-dna.net/

from http://gibk26.bse.kyutech.ac.jp
From http://www-lmmb.ncifcrf.gov/~toms/sequencelogo.html
From http://www-lmmb.ncifcrf.gov/~toms/sequencelogo.html

Pattern at T7 RNA polymerase binding sites

Pattern required by T7 RNA polymerase to function
E. coli Ribosome binding sites

From http://www-lmmb.ncifcrf.gov/~toms/sequencelogo.html
1055 E. coli Ribosome binding sites listed in the Miller book
This figure shows two "sequence logos" which represent sequence conservation at the 5' (donor) and 3' (acceptor) ends of human introns. The region between the black vertical bars is removed during mRNA splicing. The logos graphically demonstrate the extent of the pattern for locating the intron ends resides on the intron. This allows for greater choices in the protein-encoding exons. The logos also show a common pattern "CAG" which suggests that the intron ends are recognized by the two ends of the intron and a common ancestor. See R. M. Stephens and T. D. Schneider, "Features of spliceosome evolution and function inferred from an analysis of the information at human splice sites", J. Mol. Biol., 228, 1124-1136, (1992).
Position-Specific Relative Entropy: C. elegans 5' Splice Sites

3 bits

2 bits

1 bit

-15 -10 -5 0 5 10 15 20
Position-Specific Relative Entropy: 3’ Splice Sites

3 bits

2 bits

1 bit

branch site
From http://www-lmmb.ncifcrf.gov/~toms/sequencelogo.html
Logo of Gibbs Block D (Tc1) 9 sequences

From http://www-lmmb.ncifcrf.gov/~toms/sequencelogo.html