Today's Lecture

- Introduction to microbial communities and microbiome studies
- Simple microbial community metabolism design
- (Integer) linear programming
- Set cover (minimal set of species)
- Network flow (provide sufficient metabolic reactions)
Microbial communities influence their environments in a variety of ways.
Microbial communities influence their environments in a variety of ways

Nitrification
Microbial communities influence their environments in a variety of ways

Nitrification

Cocoa Fermentation
Microbial communities influence their environments in a variety of ways:

- Nitrification
- Cocoa Fermentation
- Sewage Treatment
Microbial communities influence their environments in a variety of ways

- Nitrification
- Cocoa Fermentation
- Sewage Treatment
- Gut Metabolism
Microbiome studies often examine two major facets of a community.
Microbiome studies often examine two major facets of a community:

Ecology
Microbiome studies often examine two major facets of a community:

Ecology
Microbiome studies often examine two major facets of a community:

- Ecology
- Metagenome
Microbiome studies often examine two major facets of a community:

- **Ecology**
- **Metagenome**
16S rRNA sequencing
16S rRNA sequencing

Taxonomic composition
16S rRNA sequencing

Taxonomic composition
16S rRNA sequencing

Whole metagenome shotgun sequencing

Taxonomic composition
Taxonomic composition

- Gen A
- Gen B
- Gen C

Functional profile

- Gene A
- Gene B
- Gene C

16S rRNA sequencing

Whole metagenome shotgun sequencing
Taxonomic composition

Functional profile

Genomic content

16S rRNA sequencing

Whole metagenome shotgun sequencing
Taxonomic composition

Functional profile

Genomic content

16S rRNA sequencing

Whole metagenome shotgun sequencing
16S rRNA sequencing

Whole metagenome shotgun sequencing

Taxonomic composition

Functional profile

Genomic content
What can we learn from microbiome data?
Example: Gut communities
What can we learn from microbiome data? Example: Gut communities

- Identify species/strains associations
What can we learn from microbiome data?
Example: Gut communities

- Identify species/strains associations
 - e.g. Increased Firmicutes abundance in the gut is associated with obesity in mice and humans
What can we learn from microbiome data?
Example: Gut communities

- Identify species/strains associations
 - e.g. Increased Firmicutes abundance in the gut is associated with obesity in mice and humans

- Determine causal links between microbial communities and health state
What can we learn from microbiome data? Example: Gut communities

• Identify species/strains associations
 – e.g. Increased Firmicutes abundance in the gut is associated with obesity in mice and humans

• Determine causal links between microbial communities and health state
 – Communities from obese mice transplanted into germ-free mice lead to obese characteristics
What can we learn from microbiome data? Example: Gut communities

- Identify species/strains associations
 - e.g. Increased Firmicutes abundance in the gut is associated with obesity in mice and humans

- Determine causal links between microbial communities and health state
 - Communities from obese mice transplanted into germ-free mice lead to obese characteristics

- Develop potential therapeutic communities
What can we learn from microbiome data?
Example: Gut communities

• Identify species/strains associations
 – e.g. Increased Firmicutes abundance in the gut is associated with obesity in mice and humans

• Determine causal links between microbial communities and health state
 – Communities from obese mice transplanted into germ-free mice lead to obese characteristics

• Develop potential therapeutic communities
 – A synthetic community of 33 common gut species showed positive results in treating \textit{Clostridium difficile} infection
I see the problem. Your gut microbiome is out of balance.

One moment.

I think you mean microbiome.

...right?

No. Here, swallow this. That's a wolf.

Do you need a glass of water?
I see the problem. Your gut microbiome is out of balance.

One moment.

No. Here, swallow this. That's a wolf. Do you need a glass of water?
Designing microbial communities requires mechanistic information
Designing microbial communities requires mechanistic information

- Community dynamics
Designing microbial communities requires mechanistic information

• Community dynamics
 – Will the community composition be stable over time?
Designing microbial communities requires mechanistic information

- Community dynamics
 - Will the community composition be stable over time?
 - Can the community adapt properly to perturbations?
Designing microbial communities requires mechanistic information

- **Community dynamics**
 - Will the community composition be stable over time?
 - Can the community adapt properly to perturbations?

- **Community function**
Designing microbial communities requires mechanistic information

- **Community dynamics**
 - Will the community composition be stable over time?
 - Can the community adapt properly to perturbations?

- **Community function**
 - Is the community detrimental to the host/environment?
Designing microbial communities requires mechanistic information

- **Community dynamics**
 - Will the community composition be stable over time?
 - Can the community adapt properly to perturbations?

- **Community function**
 - Is the community detrimental to the host/environment?
 - Will the community have a desired metabolic activity?
Designing microbial communities requires mechanistic information

- Community dynamics
 - Will the community composition be stable over time?
 - Can the community adapt properly to perturbations?

- Community function
 - Is the community detrimental to the host/environment?
 - Will the community have a desired metabolic activity?
 - Production/degradation of certain compounds?
Metabolism can be represented as a directed graph.
Metabolism can be represented as a directed graph

β-D-galactose \rightarrow α-D-galactose \rightarrow galactose 1-phosphate \rightarrow UDP-galactose \rightarrow UDP-glucose
Problem Definition:

Find a minimal set of species which together provide a sufficient set of metabolic reactions to convert a given substrate to a given product.
Desired Metabolism

Species and Reactions

Desired Community

Substrate

Species 1

Species 2

Species 3

Product

Substrate

Product
We can consider this problem in two pieces
We can consider this problem in two pieces

• First component: Set cover
 – Find a minimal set of species that provide a given set of metabolic reactions
We can consider this problem in two pieces

- First component: Set cover
 - Find a minimal set of species that provide a given set of metabolic reactions

- Second component: Network flow
 - Consider all sets of sufficient metabolic reactions converting substrates to products
First problem: finding a minimal set of species
First problem: finding a minimal set of species
Second problem: consider all viable paths through the metabolic network
Second problem: consider all viable paths through the metabolic network