Today’s Lecture

• Algorithm generalities / complexity

• Directed graphs, WDAGs

• (Dynamic programming to find highest weight paths)
Genomes are big but computers are fast!

• Typical laptop clock speed: ~ 1 Ghz
 – Potentially billions of CPU instructions / sec

• Important practical consideration in dealing with genome-scale data sets: compared to CPU operations,
 – *non-cache memory accesses* are very slow (100s of cycles)
 – *disk accesses* are even slower (1000s of cycles)
 – for both, random (non-sequential) accesses are much slower than sequential accesses
Algorithms – Some General Remarks

• The most widely used algorithms are the oldest
 – e.g. sorting lists, traversing trees, dynamic programming.
The challenge in CMB is usually not finding new algorithms, but rather
 – finding biologically appropriate applications of old ones.

• Often prefer
 – suboptimal but easy-to-program algorithm over more optimal one
 – or space-efficient algorithm over time-efficient one.

• Probabilities are important in
 – interpreting results
 – guiding search

The most powerful analyses generally involve probabilistic models, rather than deterministic ones.
Algorithmic Complexity

• Basic questions about an algorithm:
 – how long does it take to run?
 – how much space (RAM or disk space) does it require?

• Would like precise function $f(N)$, e.g.

 $f(N) = .05 N^3 + 50.7 N^2 + 6.03 N$

for
 – running time in secs, or
 – space in kbytes,

as function of the size N of input data set.

• But
 – tedious to derive &
 – depends on (often uninteresting – though important!) hardware & software implementation details.
Algorithmic Complexity (cont’d)

• Instead, more customary to give “the” asymptotic complexity, i.e. expression $g(N)$ such that

 $$C_1 g(N) < f(N) < C_2 g(N)$$

 for some constants C_1 and C_2, and N large enough.

• This is written $O(g(N))$, where notation $O()$ means “up to an unspecified multiplicative constant”.

 – e.g. for the $f(N)$ above, the dominating term for large N is $0.05 N^3$, so

 • can take $g(N) = N^3$

 • asymptotic complexity $= O(N^3)$.
Algorithmic Complexity (cont’d)

• Can be misleading, since
 – for small N a different term may dominate
 • (e.g. 2^d term in above example much more important for $N < 1000$)
 – size of constant may be quite important
 • (big difference between .05 and 5,000,000!)
 • e.g. BLAST and Smith-Waterman both $O(N^2)$, but size of constant enormously different

• but very useful as rough guide to performance.
Algorithmic Complexity (cont’d)

• Cache misses (non-cache memory accesses) and disk accesses often dominate running time, yet are ‘invisible’ to complexity analysis (because affect constant factor only)
Algorithmic Complexity (cont’d)

• Another limitation to complexity analysis:
 – time or space requirement may depend on specific characteristics of input data.

• Usually give “worst case” complexity
 – applies to the worst data set of a given size,

but

 – in biological situations the average biologically occurring case is
 • more relevant
 • often much easier than worst case (which may never arise in practice), or even “average case” in some idealized sense.
Algorithmic Complexity (cont’d)

- Proof that a problem is \textit{NP-hard}
 - (has complexity very likely greater than any polynomial function of \(N \) and therefore effectively unsolvable for large \(N \))

 can be useful in guiding search for more efficient algorithms

\textit{but} can also be misleading, since

- we need \textit{some} solution anyway, for data sets occurring in practice
- average \textit{biologically relevant} case may be quite manageable
Directed Graphs

• A *directed graph* is a pair (V, E) where
 – V is a finite set of *vertices*, or *nodes*.
 – E is a set of ordered pairs (called *edges*) of vertices in V.

• An edge (v_i, v_j) is said to *leave* v_i and to *enter* v_j.
 – (v_i and v_j are vertices)

• *in-degree* of a vertex = # edges entering it;
• *out-degree* = # edges leaving it.
Example:

- $V = \{1,2,3,4,5,6\}$,
- $E = \{(1,2), (1,3), (2,4), (4,1), (5,3), (3,1)\}$
- Vertex 3 has in-degree 2 and out-degree 1.
Paths and Cycles

- A **path** of **length** \(k\) in \(G\) from \(u\) to \(u'\) (vertices) is
 - a sequence \(P\) of vertices \((v_0, v_1, \ldots, v_k)\) such that
 - \(v_0 = u\),
 - \(v_k = u'\), and
 - \((v_{i-1}, v_i)\) is an edge for \(i = 1,2, \ldots, k\).

- A path can have length 0.

- We write \(|P| = k\).

- A **cycle** is a path of length \(\geq 1\) from a vertex to itself.

- In example at right,
 - \((1,2,4)\) is a path,
 - \((1,3,5)\) is not, and
 - \((1,2,4,1)\) and \((1,3,1)\) are cycles.
Paths and Cycles (cont’d)

• Can join
 – any path \((u, \ldots, v)\) from \(u\) to \(v\), to
 – any path \((v, \ldots, w)\) from \(v\) to \(w\)

 to get a path \((u, \ldots, v, \ldots, w)\) from \(u\) to \(w\).
DAGs

• A *directed acyclic graph* (DAG) is a directed graph with no cycles.

• In a DAG, for distinct nodes v_i and v_j, we say
 - v_i is a *parent* of v_j, and v_j is a *child* of v_i, if
 • there is an edge (v_i, v_j)
 - v_i is an *ancestor* of v_j, and v_j is a *descendant* of v_i, if
 • there is a path from v_i to v_j

• In a DAG the length of a path cannot exceed $|V| - 1$,
 - (where $|V|$ = total # vertices in graph)

because
 - in a path of length $\geq |V|$,
 • at least one vertex v would have to appear twice in the path;
 - but then there would be a path from v to v, i.e. a cycle.
Structure of DAGs

• Define the *depth* of a node v in V as:
 – the length of the longest path ending at v;

by above, the depth is well-defined and $\leq |V| - 1$.

• *Every descendant w of a node v has higher depth than v:*
 If
 – (u, \ldots, v) is path of length $n = \text{depth}(v)$ ending at v,
 and
 – (v, \ldots, w) is path from v to w,
then $(u, \ldots, v, \ldots, w)$ is a path of length $> n$ ending at w, so $\text{depth}(w) > n$.
Every node v of positive depth has a parent of depth exactly one less:

- Let (u, \ldots, v', v) be path of length $n = \text{depth}(v)$ ending at v.
- Then v' is a parent of v.
- Since (u, \ldots, v') has length $n - 1$, $\text{depth}(v') \geq n - 1$.
- Since also $\text{depth}(v') < n$ (because v is a descendant of v'), $\text{depth}(v')$ is exactly $n - 1$.

The nodes on any path are of increasing depth.
Structure of DAGs (cont’d)

Depth 0

Depth 1

Depth 2

Depth 3

. . .
Important special cases:

- A (rooted) **tree** is a DAG which
 - has unique depth 0 node (the *root*), and
 - every other node has in-degree 1
 - (i.e. has a unique parent, of depth one less than that of the node).

- A **binary tree** is a tree in which
 - every node has out-degree at most 2.

- A **linked list** is a tree in which
 - every node has out-degree at most 1
 - or equivalently, a DAG in which \(\exists \) at most one node of each depth
binary tree

linked list

$\begin{align*}
v_0 &\quad \rightarrow \quad v_1 \\
v_1 &\quad \rightarrow \quad v_3 \\
v_3 &\quad \rightarrow \quad v_6 \\
v_6 &\quad \rightarrow \quad v_7 \\
v_7 &\quad \rightarrow \quad v_8 \\
v_1 &\quad \rightarrow \quad v_4 \\
v_4 &\quad \rightarrow \quad v_2 \\
v_2 &\quad \rightarrow \quad v_5 \\
v_5 &\quad \rightarrow \quad v_0
\end{align*}$
Remarks on Depth Structure

• For *dynamic programming* algorithm
 – we need an order \(v_1, v_2, \ldots, v_n \) for the vertices
 • (not a path!)
 in which parents appear before children.
 – From the above, *depth order*
 • (in which depth 0 nodes are listed first, then depth 1 nodes, etc.)
 is such an order.
 – In general there are many other such orders.

• We haven’t given constructive procedure for finding the depths of all vertices.
 – For an arbitrary DAG, can be done in \(O(|V| + |E|) \) time;
 – we omit algorithm, since for DAGs related to sequence analysis, the depth structure is obvious.
Weighted Directed Graphs

- A *weighted directed graph* is
 - a directed graph \((V, E)\) together with
 - a function \(w\) from \(E\) to the real numbers,
 - i.e. with a numerical *weight* \(w(e)\) (which may be positive, negative, or 0) associated to each edge \(e\).

A weighted DAG is called a WDAG.

- The *(sum)* *weight of a path* is defined to be the sum of the weights on the edges of the path.
- Similarly, the *product weight of a path* is the product of the edge weights
 - usually only consider this when all weights are non-negative.
- weight of a path \(P\) is written \(w(P)\)
- For a path of length 0 (i.e. consisting of a single vertex):
 - the sum weight is 0
 - the product weight is 1
Highest Weight Paths on WDAGs

- **Problem**: find a path with the highest possible weight.

- **Solution**:
 - “Brute force” approach
 - i.e. simply enumerating all possible paths and comparing their weights
 - is usually impractical (too many paths!)
 - Instead, use the method of *dynamic programming* (‘The Fundamental Algorithm of Computational Biology’).
Highest Weight Paths on WDAGs (cont’d)

• Let $P_n = (v_0, v_1, \ldots, v_n)$ be a path of highest weight.
• Then for each $k < n$, the sub-path $P_k = (v_0, v_1, \ldots, v_k)$ must have highest weight of all paths ending at v_k, because
 – if $Q = (u_0, u_1, \ldots, v_k)$ were another path ending at v_k and having higher weight than P_k,
 – then the path $(Q, v_{k+1}, \ldots, v_n)$ would have weight
 \[w((Q, v_{k+1}, \ldots, v_n)) = w(Q) + w((v_k, \ldots, v_n)) \]
 \[> w(P_k) + w((v_k, \ldots, v_n)) = w(P_n), \]
 contradicting assumption that P_n has highest weight.
Subpaths of a highest-weight path can’t be improved:

If this has highest weight of all paths ending at v_5 then...

this must have highest weight of all paths ending at v_4
Highest Weight Paths on WDAGs (cont’d)

• So generalize the problem as follows:

• find, for each vertex \(v \), the highest weight of all paths ending at \(v \) – call this \(w(v) \)

• Can find \(w(v) \) in single pass through \(V \), as follows:
 – process the \(v \) in depth order (or any order in which parents precede children)
 – if \(v \) has no parents, \(w(v) = 0 \) (the only path ending at \(v \) is \((v) \)).
 – for any other \(v \), except for the path \((v) \) (which has weight 0), any path ending at \(v \) is of form \((v_0, v_1, \ldots, v_k, u, v)\). Then
 – \(u \) is a parent of \(v \), so \(w(u) \) has already been computed, and
 \[w((v_0, v_1, \ldots, v_k, u, v)) \leq w(u) + w((u,v)) \]
 with equality for an appropriate choice of \(v_i \).
 – Therefore we may compute \(w(v) \) as
 \[w(v) = \max(0, \max_{u \in \text{parents}(v)} (w(u) + w((u,v)))) \]
Example

Depth 0

Depth 1

Depth 2

Depth 3

Depth 4
$w(v) – \text{depth 0 nodes}$

Depth 0

$\begin{array}{c}
\text{Depth 1} \\
\text{Depth 2} \\
\text{Depth 3} \\
\text{Depth 4}
\end{array}$
$w(v) –$ depth 1 nodes
$w(v) -$ depth 2 nodes
$w(v) – \text{depth 3 nodes}$
$w(v) – \text{depth 4 nodes}$