
Today’s Lecture

• Algorithm generalities / complexity

• Directed graphs, WDAGs

1

Genomes are big

but computers are fast!

• Typical laptop clock speed: ~ 1 Ghz

– Potentially billions of CPU instructions / sec

• Important practical consideration in dealing
with genome-scale data sets: compared to
CPU operations,

– non-cache memory accesses are very slow
(100s of cycles)

– disk accesses are even slower (1000s of cycles)

– for both, random (non-sequential) accesses are
much slower than sequential accesses

2

3

Algorithms – Some General Remarks

• The most widely used algorithms are the oldest

– e.g. sorting lists, traversing trees, dynamic programming.

 The challenge in CMB is usually not finding new algorithms,

 but rather

– finding biologically appropriate applications of old ones.

• Often prefer

– suboptimal but easy-to-program algorithm over more optimal one

– or space-efficient algorithm over time-efficient one.

• Probabilities are important in

– interpreting results

– guiding search

 The most powerful analyses generally involve probabilistic models,
rather than deterministic ones.

4

Algorithmic Complexity

• Basic questions about an algorithm:

– how long does it take to run?

– how much space (RAM or disk space) does it require?

• Would like precise function f(N), e.g.

 f(N) = .05 N3 + 50.7 N2 + 6.03 N

 for

– running time in secs, or

– space in kbytes,

 as function of the size N of input data set.

• But

– tedious to derive &

– depends on (often uninteresting – though important!) hardware &
software implementation details.

5

Algorithmic Complexity (cont’d)

• Instead, more customary to give “the” asymptotic

complexity, i.e. expression g(N) such that

 C1g(N) < f(N) < C2g(N)

 for some constants C1 and C2 , and N large enough.

• This is written O(g(N)), where notation O() means

“up to an unspecified multiplicative constant”.

– e.g. for the f(N) above, the dominating term for large N is

.05 N3, so

• can take g(N) = N3

• asymptotic complexity = O(N3).

6

Algorithmic Complexity (cont’d)

• Can be misleading, since

– for small N a different term may dominate

• (e.g. 2d term in above example much more important for N <

1000)

– size of constant may be quite important

• (big difference between .05 and 5,000,000!)

• e.g. BLAST and Smith-Waterman both O(N2), but size of

constant enormously different

• but very useful as rough guide to performance.

7

• Cache misses (non-cache memory accesses) and
disk accesses often dominate running time, yet
are ‘invisible’ to complexity analysis (because
affect constant factor only)

Algorithmic Complexity (cont’d)

8

Algorithmic Complexity (cont’d)

• Another limitation to complexity analysis:

– time or space requirement may depend on specific
characteristics of input data.

• Usually give “worst case” complexity

– applies to the worst data set of a given size,

 but

– in biological situations the average biologically
occurring case is

• more relevant

• often much easier than worst case (which may never arise in
practice), or even “average case” in some idealized sense.

9

Algorithmic Complexity (cont’d)

• Proof that a problem is NP-hard

– (has complexity very likely greater than any polynomial
function of N and therefore effectively unsolvable for
large N)

 can be useful in guiding search for more efficient
algorithms

 but can also be misleading, since

– we need some solution anyway, for data sets occurring in
practice

– average biologically relevant case may be quite
manageable

10

Directed Graphs

• A directed graph is a pair (V, E) where

– V is a finite set of vertices, or nodes.

– E is a set of ordered pairs (called edges) of vertices in

V.

• An edge (vi, vj) is said to leave vi and to enter vj.

– (vi and vj are vertices)

• in-degree of a vertex = # edges entering it;

• out-degree = # edges leaving it.

11

Example:

• V = {1,2,3,4,5,6},

• E = {(1,2), (1,3), (2,4), (4,1), (5,3), (3,1)}

• Vertex 3 has in-degree 2 and out-degree 1.

1

2 4

3

5

6

12

Paths and Cycles
• A path of length k in G from u to u’ (vertices) is

– a sequence P of vertices (v0, v1, . . . , vk) such that

• v0 = u,

• vk = u’, and

• (vi-1, vi) is an edge for i = 1,2, . . ., k.

• A path can have length 0.

• We write |P| = k.

• A cycle is a path of length  1 from a vertex to itself.

• In example at right,

– (1,2,4) is a path,

– (1,3,5) is not, and

– (1,2,4,1) and (1,3,1) are cycles.

1

2 4

3

5

6

13

Paths and Cycles (cont’d)

• Can join

– any path (u, ... , v) from u to v, to

– any path (v, ... , w) from v to w

 to get a path (u, ... , v, ... , w) from u to w.

14

DAGs

• A directed acyclic graph (DAG) is a directed graph with
no cycles.

• In a DAG, for distinct nodes vi and vj, we say
– vi is a parent of vj, and vj is a child of vi, if

• there is an edge (vi, vj)

– vi is an ancestor of vj, and vj is a descendant of vi, if
• there is a path from vi to vj

• In a DAG the length of a path cannot exceed |V| - 1,
– (where |V| = total # vertices in graph)

 because
– in a path of length  |V|,

• at least one vertex v would have to appear twice in the path;

– but then there would be a path from v to v, i.e. a cycle.

15

Structure of DAGs

• Define the depth of a node v in V as:

– the length of the longest path ending at v;

 by above, the depth is well-defined and  |V| - 1.

• Every descendant w of a node v has higher depth

than v: If

– (u, ... ,v) is path of length n = depth(v) ending at v,

and

– (v, ..., w) is path from v to w,

 then (u, ..., v, ..., w) is a path of length > n ending

at w, so depth(w) > n.

16

Structure of DAGs (cont’d)

• Every node v of positive depth has a parent of depth

exactly one less:

– Let (u, ... , v’, v) be path of length n = depth(v) ending at v.

– Then v’ is a parent of v.

– Since (u, ... , v’) has length n – 1, depth(v’)  n – 1.

– Since also depth(v’) < n (because v is a descendant of v’),

depth(v’) is exactly n – 1.

• The nodes on any path are of increasing depth.

17

Structure of DAGs (cont’d)

Depth 0

Depth 1

Depth 2

Depth 3

v0

v2 v3

v7

v1

v5

v8

v4

v6

v9

v10

.

.

.

18

Important special cases:

• A (rooted) tree is a DAG which

– has unique depth 0 node (the root), and

– every other node has in-degree 1

• (i.e. has a unique parent, of depth one less than that of the node).

• A binary tree is a tree in which

– every node has out-degree at most 2.

• A linked list is a tree in which

– every node has out-degree at most 1

– or equivalently, a DAG in which  at most one node of each

depth

19

v0

v4 v3

v2 v1

v5

v7
v6 v8

binary tree

v0

linked list

v1

v2

v3

v4

20

Remarks on Depth Structure

• For dynamic programming algorithm

– we need an order v1, v2, ..., vn for the vertices

• (not a path!)

 in which parents appear before children.

– From the above, depth order

• (in which depth 0 nodes are listed first, then depth 1 nodes, etc.)

 is such an order.

– In general there are many other such orders.

• We haven’t given constructive procedure for finding
the depths of all vertices.

– For an arbitrary DAG, can be done in O(|V| + |E|) time;

– we omit algorithm, since for DAGs related to sequence
analysis, the depth structure is obvious.

21

Weighted Directed Graphs
• A weighted directed graph is

– a directed graph (V, E) together with

– a function w from E to the real numbers,

• i.e. with a numerical weight w(e) (which may be positive, negative, or 0)
associated to each edge e.

 A weighted DAG is called a WDAG.

• The (sum) weight of a path is defined to be the sum of the weights
on the edges of the path.

• Similarly, the product weight of a path is the product of the edge
weights

– usually only consider this when all weights are non-negative.

• weight of a path P is written w(P)

• For a path of length 0 (i.e. consisting of a single vertex):

– the sum weight is 0

– the product weight is 1

