
Today’s Lecture 

• Algorithm generalities / complexity 

 

• Directed graphs, WDAGs 
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Genomes are big  

but computers are fast! 

• Typical laptop clock speed: ~ 1 Ghz 

– Potentially billions of CPU instructions / sec 

• Important practical consideration in dealing 
with genome-scale data sets: compared to 
CPU operations, 

– non-cache memory accesses are very slow 
(100s of cycles) 

– disk accesses are even slower (1000s of cycles) 

– for both, random (non-sequential) accesses are 
much slower than sequential accesses 
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Algorithms – Some General Remarks 

• The most widely used algorithms are the oldest 

– e.g. sorting lists, traversing trees, dynamic programming.  

   The challenge in CMB is usually not finding new algorithms,  

    but rather  

– finding biologically appropriate applications of old ones. 

• Often prefer  

– suboptimal but easy-to-program algorithm over more optimal one  

– or space-efficient algorithm over time-efficient one. 

• Probabilities are important in  

– interpreting results 

– guiding search 

    The most powerful analyses generally involve probabilistic models, 
rather than deterministic ones. 



4 

Algorithmic Complexity 

• Basic questions about an algorithm: 

– how long does it take to run? 

– how much space (RAM or disk space) does it require? 

• Would like precise function f(N), e.g.   

        f(N) = .05 N3 + 50.7 N2 + 6.03 N  

   for  

– running time in secs, or  

– space in kbytes,  

    as function of the size N of input data set.   

• But  

– tedious to derive &  

– depends on (often uninteresting – though important!) hardware & 
software implementation details. 
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Algorithmic Complexity (cont’d) 

• Instead, more customary to give “the” asymptotic 

complexity, i.e. expression g(N) such that  

                     C1g(N)  < f(N) < C2g(N)  

    for some constants C1 and C2 , and N large enough.   

• This is written O(g(N)), where notation O() means 

“up to an unspecified multiplicative constant”.  

– e.g. for the f(N) above, the dominating term for large N is 

.05 N3, so  

• can take g(N) = N3  

• asymptotic complexity = O(N3).  
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Algorithmic Complexity (cont’d) 

• Can be misleading, since  

– for small N  a different term may dominate  

• (e.g. 2d  term in above example much more important for N < 

1000) 

– size of constant may be quite important  

• (big difference between .05 and 5,000,000!)  

• e.g. BLAST and Smith-Waterman both O(N2), but size of 

constant enormously different 

•   but very useful as rough guide to performance. 
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• Cache misses (non-cache memory accesses) and 
disk accesses often dominate running time, yet 
are ‘invisible’ to complexity analysis (because 
affect constant factor only) 

Algorithmic Complexity (cont’d) 
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Algorithmic Complexity (cont’d)  

• Another limitation to complexity analysis: 

– time or space requirement may depend on specific 
characteristics of input data.  

• Usually give “worst case” complexity  

– applies to the worst data set of a given size,  

   but  

–  in biological situations the average biologically 
occurring case is  

• more relevant 

• often much easier than worst case (which may never arise in 
practice), or even “average case” in some idealized sense. 
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Algorithmic Complexity (cont’d) 

• Proof that a problem is NP-hard  

– (has complexity very likely greater than any polynomial 
function of N and therefore effectively unsolvable for 
large N)  

    can be useful in guiding search for more efficient 
algorithms  

   but can also be misleading, since  

– we need some solution anyway, for data sets occurring in 
practice 

– average biologically relevant case may be quite 
manageable 
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Directed Graphs 

• A directed graph is a pair (V, E) where  

– V is a finite set of vertices, or nodes.  

– E is a set of ordered pairs (called edges) of vertices in 

V.  

• An edge (vi, vj ) is said to leave vi and to enter vj.  

– (vi and vj are vertices)  

• in-degree of a vertex = # edges entering it;  

• out-degree = # edges leaving it. 
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Example:  

• V = {1,2,3,4,5,6},  

• E = {(1,2), (1,3), (2,4), (4,1), (5,3), (3,1)} 

• Vertex 3 has in-degree 2 and out-degree 1. 
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Paths and Cycles 
• A path of length k in G from u to u’ (vertices) is  

– a sequence P of vertices (v0, v1, . . . , vk) such that  

• v0 = u,  

• vk = u’, and  

• (vi-1, vi ) is an edge for i = 1,2, . . ., k.  

• A path can have length 0.  

• We write |P| = k.  

• A cycle is a path of length  1 from a vertex to itself. 

• In example at right,  

– (1,2,4) is a path,  

– (1,3,5) is not, and  

– (1,2,4,1) and (1,3,1) are cycles. 
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Paths and Cycles (cont’d) 

• Can join 

– any path (u, ... , v) from u to v, to  

– any path (v, ... , w) from v to w  

  to get a path (u, ... , v, ... , w) from u to w. 
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DAGs  

• A directed acyclic graph (DAG) is a directed graph with 
no cycles. 

• In a DAG, for distinct nodes vi  and vj, we say 
– vi is a parent of vj, and vj is a child of vi, if  

• there is an edge (vi, vj ) 

– vi is an ancestor of vj, and vj is a descendant of vi, if  
• there is a path from vi  to vj 

• In a DAG the length of a path cannot exceed |V| - 1,  
– (where |V| = total # vertices in graph) 

    because  
– in a path of length  |V|, 

•  at least one vertex v would have to appear twice in the path;  

– but then there would be a path from v to v, i.e. a cycle. 
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Structure of DAGs  

• Define the depth of a node v in V  as:  

– the length of the longest path ending at v;  

    by above, the depth is well-defined and  |V| - 1. 

• Every descendant w of a node v has higher depth 

than v:  If  

– (u, ... ,v) is path of length n = depth(v) ending at v, 

and  

– (v, ..., w) is path from v to w,  

   then (u, ..., v, ..., w) is a path of length > n ending 

at w, so depth(w) > n. 
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Structure of DAGs (cont’d) 

• Every node v of positive depth has a parent of depth 

exactly one less:  

– Let (u, ... , v’, v) be path of length n = depth(v) ending at v.  

– Then v’  is a parent of v.  

– Since (u, ... , v’) has length n – 1, depth(v’)  n – 1. 

– Since also depth(v’) < n (because v is a descendant of v’), 

depth(v’) is exactly n – 1. 

• The nodes on any path are of increasing depth. 
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Structure of DAGs (cont’d) 

Depth 0 

Depth 1 

Depth 2 

Depth 3 

v0 

v2 v3 

v7 

v1 

v5 

v8 

v4 

v6 

v9 

v10 

. 

. 

. 



18 

Important special cases: 

• A (rooted) tree is a DAG which  

– has unique depth 0 node (the root), and  

– every other node has in-degree 1  

• (i.e. has a unique parent, of depth one less than that of the node).  

• A binary tree is a tree in which  

– every node has out-degree at most 2. 

• A linked list is a tree in which  

– every node has out-degree at most 1  

– or equivalently, a DAG in which  at most one node of each 

depth 
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Remarks on Depth Structure 

• For dynamic programming algorithm   

– we need an order v1, v2, ..., vn for the vertices  

• (not a path!)  

    in which parents appear before children.  

– From the above, depth order  

• (in which depth 0 nodes are listed first, then depth 1 nodes, etc.)  

   is such an order.  

– In general there are many other such orders. 

• We haven’t given constructive procedure for finding 
the depths of all vertices.  

– For an arbitrary DAG, can be done in O(|V| + |E|) time;  

– we omit algorithm, since for DAGs related to sequence 
analysis, the depth structure is obvious. 
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Weighted Directed Graphs 
• A weighted directed graph is  

– a directed graph (V, E) together with  

– a function w from E to the real numbers,  

• i.e. with a numerical weight w(e) (which may be positive, negative, or 0) 
associated to each edge e.  

  A weighted DAG is called a WDAG. 

• The (sum) weight of a path is defined to be the sum of the weights 
on the edges of the path.  

• Similarly, the product weight of a path is the product of the edge 
weights  

– usually only consider this when all weights are non-negative.  

• weight of a path P is written w(P) 

• For a path of length 0 (i.e. consisting of a single vertex): 

– the sum weight is 0 

– the product weight is 1 

 


