Today’s Lecture

• Algorithm generalities / complexity
• Directed graphs, WDAGs
• (Dynamic programming to find highest weight paths)
Genomes are big but computers are fast!

• Typical laptop clock speed: ~1 Ghz
 – Potentially billions of CPU instructions/sec

• Important practical consideration in dealing with genome-scale data sets: compared to CPU operations,
 – *non-cache memory accesses* are very slow (100s of cycles)
 – *disk accesses* are even slower (1000s of cycles)
 – for both, random (non-sequential) accesses are much slower than sequential accesses
Algorithms – Some General Remarks

• The most widely used algorithms are the oldest
 – e.g. sorting lists, traversing trees, dynamic programming.

The challenge in CMB is usually *not* finding *new* algorithms, but rather
 – finding *biologically appropriate applications* of old ones.

• Often prefer
 – suboptimal but easy-to-program algorithm over more optimal one
 – or space-efficient algorithm over time-efficient one.

• *Probabilities* are important in
 – interpreting results
 – guiding search

The most powerful analyses generally involve probabilistic models, rather than deterministic ones.
Algorithmic Complexity

- Basic questions about an algorithm:
 - how long does it take to run?
 - how much space (RAM or disk space) does it require?
- Would like precise function $f(N)$, e.g.
 $$f(N) = 0.05N^3 + 50.7N^2 + 6.03N$$
 for
 - running time in secs, or
 - space in kbytes,
as function of the size N of input data set.
- But
 - tedious to derive &
 - depends on (often uninteresting – though important!) hardware & software implementation details.
Algorithmic Complexity (cont’d)

• Instead, more customary to give “the” asymptotic complexity, i.e. expression $g(N)$ such that

$$C_1 g(N) < f(N) < C_2 g(N)$$

for some constants C_1 and C_2, and N large enough.

• This is written $O(g(N))$, where notation $O()$ means “up to an unspecified multiplicative constant”.

 – e.g. for the $f(N)$ above, the dominating term for large N is $.05 N^3$, so

 • can take $g(N) = N^3$
 • asymptotic complexity = $O(N^3)$.
Algorithmic Complexity (cont’d)

• Can be misleading, since
 – for small N a different term may dominate
 • (e.g. 2^d term in above example much more important for $N < 1000$)
 – size of constant may be quite important
 • (big difference between .05 and 5,000,000!)
 • e.g. BLAST and Smith-Waterman both $O(N^2)$, but size of constant enormously different
• \textit{but} very useful as rough guide to performance.
Algorithmic Complexity (cont’d)

- Cache misses (non-cache memory accesses) and disk accesses often dominate running time, yet are ‘invisible’ to complexity analysis (because affect constant factor only)
Algorithmic Complexity (cont’d)

• Another limitation to complexity analysis:
 – time or space requirement may depend on specific characteristics of input data.

• Usually give “worst case” complexity
 – applies to the worst data set of a given size,

 but
 – in biological situations the average biologically occurring case is

 • more relevant
 • often much easier than worst case (which may never arise in practice), or even “average case” in some idealized sense.
Algorithmic Complexity (cont’d)

• Proof that a problem is \textit{NP-hard}
 – (has complexity very likely greater than any polynomial
 function of N and therefore effectively unsolvable for
 large N)

 can be useful in guiding search for more efficient
 algorithms

\textit{but} can also be misleading, since

– we need \textit{some} solution anyway, for data sets occurring in
 practice

– average \textit{biologically relevant} case may be quite
 manageable
Directed Graphs

• A directed graph is a pair \((V, E)\) where
 – \(V\) is a finite set of vertices, or nodes.
 – \(E\) is a set of ordered pairs (called edges) of vertices in \(V\).

• An edge \((v_i, v_j)\) is said to leave \(v_i\) and to enter \(v_j\).
 – \((v_i\) and \(v_j\) are vertices)

• **in-degree** of a vertex = \# edges entering it;

• **out-degree** = \# edges leaving it.
Example:

- $V = \{1,2,3,4,5,6\}$,
- $E = \{(1,2), (1,3), (2,4), (4,1), (5,3), (3,1)\}$
- Vertex 3 has in-degree 2 and out-degree 1.
Paths and Cycles

- A **path** of **length** k in G from u to u' (vertices) is
 - a sequence P of vertices (v_0, v_1, \ldots, v_k) such that
 - $v_0 = u$,
 - $v_k = u'$, and
 - (v_{i-1}, v_i) is an edge for $i = 1, 2, \ldots, k$.
- A path can have length 0.
- We write $|P| = k$.
- A **cycle** is a path of length ≥ 1 from a vertex to itself.
- In example at right,
 - $(1,2,4)$ is a path,
 - $(1,3,5)$ is not, and
 - $(1,2,4,1)$ and $(1,3,1)$ are cycles.
Paths and Cycles (cont’d)

• Can join
 – any path \((u, \ldots, v)\) from \(u\) to \(v\), to
 – any path \((v, \ldots, w)\) from \(v\) to \(w\)

 to get a path \((u, \ldots, v, \ldots, w)\) from \(u\) to \(w\).
DAGs

- A *directed acyclic graph* (DAG) is a directed graph with no cycles.

- In a DAG, for distinct nodes v_i and v_j, we say
 - v_i is a *parent* of v_j, and v_j is a *child* of v_i, if
 - there is an edge (v_i, v_j)
 - v_i is an *ancestor* of v_j, and v_j is a *descendant* of v_i, if
 - there is a path from v_i to v_j

- In a DAG the length of a path cannot exceed $|V| - 1$,
 - (where $|V|$ = total # vertices in graph)
 - because
 - in a path of length $\geq |V|$,
 - at least one vertex v would have to appear twice in the path;
 - but then there would be a path from v to v, i.e. a cycle.
Structure of DAGs

• Define the *depth* of a node v in V as:
 – the length of the longest path ending at v;
 by above, the depth is well-defined and $\leq |V| - 1$.

• *Every descendant w of a node v has higher depth than v*: If
 – (u, \ldots, v) is path of length $n = \text{depth}(v)$ ending at v, and
 – (v, \ldots, w) is path from v to w,
then $(u, \ldots, v, \ldots, w)$ is a path of length $> n$ ending at w, so $\text{depth}(w) > n$.
Structure of DAGs (cont’d)

• Every node \(v \) of positive depth has a parent of depth exactly one less:
 – Let \((u, \ldots, v', v)\) be path of length \(n = \text{depth}(v) \) ending at \(v \).
 – Then \(v' \) is a parent of \(v \).
 – Since \((u, \ldots, v')\) has length \(n - 1 \), \(\text{depth}(v') \geq n - 1 \).
 – Since also \(\text{depth}(v') < n \) (because \(v \) is a descendant of \(v' \)), \(\text{depth}(v') \) is exactly \(n - 1 \).

• The nodes on any path are of increasing depth.
Structure of DAGs (cont’d)
Important special cases:

- **A (rooted) tree** is a DAG which
 - has unique depth 0 node (the *root*), and
 - every other node has in-degree 1
 - (i.e. has a unique parent, of depth one less than that of the node).

- **A binary tree** is a tree in which
 - every node has out-degree at most 2.

- **A linked list** is a tree in which
 - every node has out-degree at most 1
 - or equivalently, a DAG in which \exists at most one node of each depth
binary tree

linked list

v_0
v_1
v_2
v_3
v_4
v_5

v_6
v_7
v_8

v_0

v_1

v_2

v_3

v_4
Remarks on Depth Structure

• For *dynamic programming* algorithm
 – we need an order \(v_1, v_2, ..., v_n \) for the vertices
 • (not a path!)
 in which parents appear before children.
 – From the above, *depth order*
 • (in which depth 0 nodes are listed first, then depth 1 nodes, etc.)
 is such an order.
 – In general there are many other such orders.

• We haven’t given constructive procedure for finding the depths of all vertices.
 – For an arbitrary DAG, can be done in \(O(|V| + |E|) \) time;
 – we omit algorithm, since for DAGs related to sequence analysis, the depth structure is obvious.
Weighted Directed Graphs

- A **weighted directed graph** is
 - a directed graph \((V, E)\) together with
 - a function \(w\) from \(E\) to the real numbers,
 - i.e. with a numerical **weight** \(w(e)\) (which may be positive, negative, or 0) associated to each edge \(e\).

A weighted DAG is called a WDAG.

- The *(sum)* **weight of a path** is defined to be the sum of the weights on the edges of the path.
- Similarly, the *product weight of a path* is the product of the edge weights
 - usually only consider this when all weights are non-negative.

- weight of a path \(P\) is written \(w(P)\)
- For a path of length 0 (i.e. consisting of a single vertex):
 - the sum weight is 0
 - the product weight is 1
Highest Weight Paths on WDAGs

- **Problem**: find a path with the highest possible weight.

- **Solution**:
 - “Brute force” approach
 - i.e. simply enumerating all possible paths and comparing their weights
 - is usually impractical (too many paths!)
 - Instead, use the method of *dynamic programming* (`The Fundamental Algorithm of Computational Biology`).
Highest Weight Paths on WDAGs (cont’d)

• Let $P_n = (v_0, v_1, \ldots, v_n)$ be a path of highest weight.
• Then for each $k < n$, the sub-path $P_k = (v_0, v_1, \ldots, v_k)$ must have highest weight of all paths ending at v_k, because
 – if $Q = (u_0, u_1, \ldots, v_k)$ were another path ending at v_k and having higher weight than P_k,
 – then the path $(Q, v_{k+1}, \ldots, v_n)$ would have weight
 \[
 w((Q, v_{k+1}, \ldots, v_n)) = w(Q) + w((v_k, \ldots, v_n)) > w(P_k) + w((v_k, \ldots, v_n)) = w(P_n),
 \]
 contradicting assumption that P_n has highest weight.
Subpaths of a highest-weight path can’t be improved:

If this has highest weight of all paths ending at v_5 then...

this must have highest weight of all paths ending at v_4
So generalize the problem as follows:

- find, for each vertex v, the highest weight of all paths ending at v – call this $w(v)$

Can find $w(v)$ in single pass through V, as follows:

- process the v in depth order (or any order in which parents precede children)
- if v has no parents, $w(v) = 0$ (the only path ending at v is (v)).
- for any other v, except for the path (v) (which has weight 0), any path ending at v is of form $(v_0, v_1, \ldots, v_k, u, v)$. Then
 - u is a parent of v, so $w(u)$ has already been computed, and
 $w((v_0, v_1, \ldots, v_k, u, v)) \leq w(u) + w((u,v))$
 with equality for an appropriate choice of v_i.
 - Therefore we may compute $w(v)$ as
 $$w(v) = \max(0, \max_{u \in \text{parents}(v)} (w(u) + w((u,v))))$$
Example
$w(v) - depth 0$ nodes
$w(v) - \text{depth 1 nodes}$
$w(v) – \text{depth 2 nodes}$
$w(v) –$ depth 3 nodes
$w(v) - \text{depth 4 nodes}$