Today’s Lecture

- Algorithm generalities / complexity
- Directed graphs, WDAGs
Genomes are big
but computers are fast!

- Typical laptop clock speed: ~ 1 Ghz
 - Potentially billions of CPU instructions / sec
- Important practical consideration in dealing with genome-scale data sets: compared to CPU operations,
 - *non-cache memory accesses* are very slow (100s of cycles)
 - *disk accesses* are even slower (1000s of cycles)
 - for both, random (non-sequential) accesses are much slower than sequential accesses
Algorithms – Some General Remarks

- The most widely used algorithms are the oldest
 - e.g. sorting lists, traversing trees, dynamic programming.

 The challenge in CMB is usually not finding new algorithms, but rather
 - finding biologically appropriate applications of old ones.

- Often prefer
 - suboptimal but easy-to-program algorithm over more optimal one
 - or space-efficient algorithm over time-efficient one.

- Probabilities are important in
 - interpreting results
 - guiding search

 The most powerful analyses generally involve probabilistic models, rather than deterministic ones.
Algorithmic Complexity

• Basic questions about an algorithm:
 – how long does it take to run?
 – how much space (RAM or disk space) does it require?

• Would like precise function $f(N)$, e.g.
 $$f(N) = .05 \ N^3 + 50.7 \ N^2 + 6.03 \ N$$
 for
 – running time in secs, or
 – space in kbytes,

 as function of the size N of input data set.

• But
 – tedious to derive &
 – depends on (often uninteresting – though important!) hardware & software implementation details.
Algorithmic Complexity (cont’d)

• Instead, more customary to give “the” asymptotic complexity, i.e. expression \(g(N) \) such that

\[
C_1 g(N) < f(N) < C_2 g(N)
\]

for some constants \(C_1 \) and \(C_2 \), and \(N \) large enough.

• This is written \(O(g(N)) \), where notation \(O() \) means “up to an unspecified multiplicative constant”.
 – e.g. for the \(f(N) \) above, the dominating term for large \(N \) is \(.05 N^3 \), so
 • can take \(g(N) = N^3 \)
 • asymptotic complexity = \(O(N^3) \).
Algorithmic Complexity (cont’d)

• Can be misleading, since
 – for small N a different term may dominate
 • (e.g. 2^d term in above example much more important for $N < 1000$)
 – size of constant may be quite important
 • (big difference between .05 and 5,000,000!)
 • e.g. BLAST and Smith-Waterman both $O(N^2)$, but size of constant enormously different

• *but* very useful as rough guide to performance.
Algorithmic Complexity (cont’d)

- Cache misses (non-cache memory accesses) and disk accesses often dominate running time, yet are ‘invisible’ to complexity analysis (because affect constant factor only)
Algorithmic Complexity (cont’d)

• Another limitation to complexity analysis:
 – time or space requirement may depend on specific characteristics of input data.

• Usually give “worst case” complexity
 – applies to the worst data set of a given size,

 but

 – in biological situations the average biologically occurring case is
 • more relevant
 • often much easier than worst case (which may never arise in practice), or even “average case” in some idealized sense.
Algorithmic Complexity (cont’d)

• Proof that a problem is NP-hard
 – (has complexity very likely greater than any polynomial function of N and therefore effectively unsolvable for large N)

 can be useful in guiding search for more efficient algorithms

 but can also be misleading, since
 – we need some solution anyway, for data sets occurring in practice
 – average biologically relevant case may be quite manageable
Directed Graphs

• A directed graph is a pair \((V, E)\) where
 – \(V\) is a finite set of vertices, or nodes.
 – \(E\) is a set of ordered pairs (called edges) of vertices in \(V\).

• An edge \((v_i, v_j)\) is said to leave \(v_i\) and to enter \(v_j\).
 – \((v_i\) and \(v_j\) are vertices)

• in-degree of a vertex = \# edges entering it;
• out-degree = \# edges leaving it.
Example:

- \(V = \{1,2,3,4,5,6\} \),
- \(E = \{(1,2), (1,3), (2,4), (4,1), (5,3), (3,1)\} \)
- Vertex 3 has in-degree 2 and out-degree 1.
Paths and Cycles

- **A path of length** k **in** G **from** u **to** u' **(vertices)** is
 - a sequence P of vertices (v_0, v_1, \ldots, v_k) such that
 - $v_0 = u$,
 - $v_k = u'$, and
 - (v_{i-1}, v_i) is an edge for $i = 1, 2, \ldots, k$.

- **A path can have length** 0.
- **We write** $|P| = k$.
- **A cycle** is a path of length ≥ 1 from a vertex to itself.

- In example at right,
 - $(1,2,4)$ is a path,
 - $(1,3,5)$ is not, and
 - $(1,2,4,1)$ and $(1,3,1)$ are cycles.
Paths and Cycles (cont’d)

• Can join
 – any path \((u, \ldots, v)\) from \(u\) to \(v\), to
 – any path \((v, \ldots, w)\) from \(v\) to \(w\)

 to get a path \((u, \ldots, v, \ldots, w)\) from \(u\) to \(w\).
DAGs

• A *directed acyclic graph* (DAG) is a directed graph with no cycles.

• In a DAG, for distinct nodes v_i and v_j, we say
 – v_i is a *parent* of v_j, and v_j is a *child* of v_i, if
 • there is an edge (v_i, v_j)
 – v_i is an *ancestor* of v_j, and v_j is a *descendant* of v_i, if
 • there is a path from v_i to v_j

• In a DAG the length of a path cannot exceed $|V| - 1$, because
 – (where $|V|$ = total # vertices in graph)
 – in a path of length $\geq |V|$,
 • at least one vertex v would have to appear twice in the path;
 – but then there would be a path from v to v, i.e. a cycle.
Structure of DAGs

• Define the *depth* of a node \(v \) in \(V \) as:
 – the length of the longest path ending at \(v \);
 by above, the depth is well-defined and \(\leq |V| - 1 \).

• *Every descendant* \(w \) of a node \(v \) has higher depth than \(v \): If
 – \((u, \ldots, v)\) is path of length \(n = \text{depth}(v) \) ending at \(v \), and
 – \((v, \ldots, w)\) is path from \(v \) to \(w \),
 then \((u, \ldots, v, \ldots, w)\) is a path of length \(> n \) ending at \(w \), so \(\text{depth}(w) > n \).
Structure of DAGs (cont’d)

• **Every node \(v \) of positive depth has a parent of depth exactly one less:**
 - Let \((u, \ldots, v', v)\) be path of length \(n = \text{depth}(v) \) ending at \(v \).
 - Then \(v' \) is a parent of \(v \).
 - Since \((u, \ldots, v')\) has length \(n - 1 \), \(\text{depth}(v') \geq n - 1 \).
 - Since also \(\text{depth}(v') < n \) (because \(v \) is a descendant of \(v' \)), \(\text{depth}(v') \) is exactly \(n - 1 \).

• **The nodes on any path are of increasing depth.**
Structure of DAGs (cont’d)

Depth 0

Depth 1

Depth 2

Depth 3

\[\text{\ldots} \]

\[\text{\ldots} \]

\[\text{\ldots} \]
Important special cases:

- A *(rooted)* tree is a DAG which
 - has unique depth 0 node (the *root*), and
 - every other node has in-degree 1
 - (i.e. has a unique parent, of depth one less than that of the node).

- A *binary tree* is a tree in which
 - every node has out-degree at most 2.

- A *linked list* is a tree in which
 - every node has out-degree at most 1
 - or equivalently, a DAG in which \(\exists \) at most one node of each depth
binary tree

linked list

\[v_0 \]
\[v_1 \]
\[v_2 \]
\[v_3 \]
\[v_4 \]
\[v_5 \]
\[v_6 \]
\[v_7 \]
\[v_8 \]

\[v_0 \]
\[v_1 \]
\[v_2 \]
\[v_3 \]
\[v_4 \]
Remarks on Depth Structure

• For *dynamic programming* algorithm
 – we need an order \(v_1, v_2, \ldots, v_n \) for the vertices
 • (not a path!)
 in which parents appear before children.
 – From the above, *depth order*
 • (in which depth 0 nodes are listed first, then depth 1 nodes, etc.)
 is such an order.
 – In general there are many other such orders.

• We haven’t given constructive procedure for finding the depths of all vertices.
 – For an arbitrary DAG, can be done in \(O(|V| + |E|) \) time;
 – we omit algorithm, since for DAGs related to sequence analysis, the depth structure is obvious.