Today’s Lecture

• Dynamic programming to find highest weight paths
• Weighted linked lists
 – Sequence graphs
 – WLLs for “motif clusters” & numerical data
 – Statistical issues
Highest Weight Paths on WDAGs

• **Problem**: find a path with the highest possible weight.

• **Solution**:
 – “Brute force” approach
 • i.e. simply enumerating all possible paths and comparing their weights
 is usually impractical (too many paths!)
 – Instead, use the method of *dynamic programming* (‘The Fundamental Algorithm of Computational Biology’).
Highest Weight Paths on WDAGs (cont’d)

• Let $P_n = (v_0, v_1, \ldots, v_n)$ be a path of highest weight.
• Then for each $k < n$, the sub-path $P_k = (v_0, v_1, \ldots, v_k)$ must have highest weight of all paths ending at v_k, because
 – if $Q = (u_0, u_1, \ldots, v_k)$ were another path ending at v_k and having higher weight than P_k,
 – then the path $(Q, v_{k+1}, \ldots, v_n)$ would have weight
 \[w((Q, v_{k+1}, \ldots, v_n)) = w(Q) + w((v_k, \ldots, v_n)) \]
 \[> w(P_k) + w((v_k, \ldots, v_n)) = w(P_n), \]
 contradicting assumption that P_n has highest weight.
Subpaths of a highest-weight path can’t be improved:

If this has highest weight of all paths ending at v_5 then...

this must have highest weight of all paths ending at v_4
Highest Weight Paths on WDAGs (cont’d)

• So generalize the problem as follows:
 • find, for *each* vertex \(v \), the highest weight of all paths ending at \(v \) – call this \(w(v) \)

• Can find \(w(v) \) in single pass through \(V \), as follows:
 – process the \(v \) in depth order (*or any order in which parents precede children*)
 – if \(v \) has no parents, \(w(v) = 0 \) (the only path ending at \(v \) is \((v) \)).
 – for any other \(v \), except for the path \((v) \) (which has weight 0), any path ending at \(v \) is of form \((v_0, v_1, \ldots, v_k, u, v) \). Then
 – \(u \) is a parent of \(v \), so \(w(u) \) has already been computed, and
 \[
 w((v_0, v_1, \ldots, v_k, u, v)) \leq w(u) + w((u,v))
 \]
 with equality for an appropriate choice of \(v_i \).
 – Therefore we may compute \(w(v) \) as
 \[
 w(v) = \max(0, \max_{u \in \text{parents}(v)} (w(u) + w((u,v))))
 \]
Example
$w(v) – depth 0$ nodes
$w(v) – \text{depth 1 nodes}$
$w(v) – depth 2 nodes$
$w(v) – depth 3 nodes$
$w(v) - \text{depth 4 nodes}$
Highest Weight Paths on WDAGs (cont’d)

• To reconstruct best path, need “traceback” pointer to immediate predecessor of \(v \) in best path:

\[
T(v) = \begin{cases}
 v & \text{if } w(v) = 0 \\
 \arg \max_{u \in \text{parents}(v)} (w(u) + w((u,v)) & \text{if } w(v) \neq 0
\end{cases}
\]

– in preceding graph, \(T(v) \) is the parent on red edge coming into \(v \)
 • if more than one such edge, pick one at random;
 • if no such edge, \(T(v) = v \)

• Sometimes useful to record beginning of best path:

\[
B(v) = \begin{cases}
 v & \text{if } w(v) = 0 \\
 B(T(v)) & \text{if } w(v) \neq 0
\end{cases}
\]
Highest Weight Paths on WDAGs (cont’d)

• Then highest weight of any path in graph is
\[\max_{v \in V} (w(v)) \]
 – updated as each node is visited
 • indicated by [] in preceding graph –
 and so doesn’t require additional pass through vertices

• if \(u = \text{argmax}_{v \in V} (w(v)) \), can reconstruct highest weight path by tracing back from \(u \), using \(T \):
 – path ends at \(u \);
 – immediate predecessor of \(u \) is \(T(u) \);
 – predecessor of \(T(u) \) is \(T(T(u)) \); etc.
 – stop when \(T(v) = v \).

• In preceding example, highest weight is 6 and \(u = v_{11} \)
Dynamic programming on WDAGs
Complexity of Dynamic Programming

- Time to find a best path is $O(|E| + |V|)$:
 - in initial pass, visit each node, and each edge into that node: $O(|E| + |V|)$
 - in traceback, visit subset of nodes, and unique edge from each node: $O(|V|)$

(Complexity to find all highest weight paths can be higher)

For very large graphs, even $O(|E| + |V|)$ may be unacceptable!
Complexity Analysis (cont’d)

• Space requirements:
 – If only want weight of best path, and beginning and end, then
 – don’t need $T(v)$, and
 – only need retain $w(v)$ and $B(v)$ until have processed all children of v (or when best path found so far ends at v).

 Space depends on graph structure, but usually $<< O(|V|)$.

 – If want path itself, must store $T(v) \forall v$
 – space $= O(|V|)$
 – \exists algorithms (for some graphs) to reduce this, but may take more time.
Implementing Dynamic Programming in a Computer Program

• Storing entire graph has space complexity = \(O(|V|+|E|)\)

• If graph has regular structure, can often “create” and process vertices and edges on the fly, without storing in memory
 – cf. edit graph (to be defined later) for aligning sequences
Same dynamic programming approach can be used to find:

1. Highest product weight path (if weights are ≥ 0)
2. Highest weight path that
 - starts in particular subset V' of vertices,
 - don’t consider paths that start outside V':
 i.e. when computing $w(v)$, don’t consider trivial path unless $v \in V'$
 - and/or ends in particular subset V''
 - only scan for the maximum $w(v)$ over V''
3. Sum of product weights of all paths ending at particular vertex
 - sum over all edges coming into v, instead of maximizing
 - this useful for probability calculations
 - Will use the above variants later!
Weighted Linked Lists (WLLs)

- **WLL** is linked list with weights on each edge – simplest kind of WDAG.
- Highest weight paths correspond to highest-scoring segments of WLL.
WLLs: Computational Issues

• Beginning & end of best path determine path uniquely, so
 – traceback is unnecessary
 – single pass through list suffices to find best path.

• Generally want next best path, etc.
 – Can find reasonably efficiently by repeated scans, but
 – Ruzzo-Tompa algorithm more efficient.

• Will discuss later an altered version of problem having some advantages
Applications to Sequences

- A sequence graph of a sequence is linked list whose edges are labelled by sequence residues (in order):
- e.g. graph for sequence ACCGCTGCGAAG is:

```
A → C → C → G → C → T → G → C → G → A → A → G
```
Weighted Sequence Graphs

- If attach weight to each residue, sequence graph becomes a WLL.

- Highest weight paths correspond to highest-scoring segments of sequence.

- Useful for identifying segments with “atypical composition”

```
A  C  C  G  C  T  G  C  G  A  A  G
-2  1  1  1  1  -2  1  1  1  -2  -2  1
```

maximal segment
• For example:
 – Gives good way to find GC-rich regions in AT-rich thermophile genomes
 • generally correspond to RNA genes (Rob Klein & Sean Eddy)
 – AT-rich, purine-rich, pyrimidine-rich regions
 – Hydrophobic, acidic, or basic regions in protein sequences
• More broadly, can find regions enriched for sequence *motifs*:
 – CpG islands in mammalian genomes
 • positive weight (e.g. +17) to the first C of each CpG, and
 • negative weight (e.g. –1) to every other base
 (This approach was used in *Nature* human genome paper).
 – *horizontally transferred* regions
 – Regions rich in (known) transcription-factor motifs
Non-sequence-based scoring

• Can also assign scores to each genomic position based on other quantitative info:
 – Next-gen read frequency, e.g.
 • CNVs (Homework 3)
 • Hypersensitive sites
 • CHIP-seq
 – Other measurements?
Important issues!

• What is best scoring system to detect the ‘target regions’?
 – Short answer: \(s(r) = \log(t_r / b_r) \) where
 • \(t_r, b_r \) are freqs of residue (or motif) \(r \) in target and background
 • (if unknown, can sometimes estimate iteratively)

• When is the score of a segment ‘significant’?
 – \(\exists \) theory (due to Karlin & Altschul) for score dist’n for highest-scoring segments in a random sequence

• Will revisit both issues later.