Today’s Lecture

• DAG structure

• Dynamic programming to find highest weight paths in WDAGs

• (Weighted linked lists)
Structure of DAGs (cont’d)
Important special cases:

- A *(rooted)* tree is a DAG which
 - has unique depth 0 node *(the root)*, *and*
 - every other node has in-degree 1
 • (i.e. has a unique parent, of depth one less than that of the node).

- A *binary tree* is a tree in which
 - every node has out-degree at most 2.

- A *linked list* is a tree in which
 - every node has out-degree at most 1
 - or equivalently, a DAG in which *∃* at most one node of each depth
Remarks on Depth Structure

• For *dynamic programming* algorithm
 – we need an order $v_1, v_2, ..., v_n$ for the vertices
 • (not a path!)
 in which parents appear before children.
 – From the above, *depth order*
 • (in which depth 0 nodes are listed first, then depth 1 nodes, etc.)
 is such an order.
 – In general there are many other such orders.

• We haven’t given constructive procedure for finding the depths of all vertices.
 – For an arbitrary DAG, can be done in $O(|V| + |E|)$ time;
 – we omit algorithm, since for DAGs related to sequence analysis, the depth structure is obvious.
A \textit{weighted directed graph} is
\begin{itemize}
 \item a directed graph \((V, E)\) together with
 \item a function \(w\) from \(E\) to the real numbers,
 \begin{itemize}
 \item i.e. with a numerical \textit{weight} \(w(e)\) (which may be positive, negative, or 0) associated to each edge \(e\).
 \end{itemize}
\end{itemize}

A weighted DAG is called a WDAG.

- The \textit{(sum) weight of a path} is defined to be the sum of the weights on the edges of the path.
- Similarly, the \textit{product weight of a path} is the product of the edge weights
 \begin{itemize}
 \item usually only consider this when all weights are non-negative.
 \end{itemize}
- weight of a path \(P\) is written \(w(P)\)
- For a path of length 0 (i.e. consisting of a single vertex):
 \begin{itemize}
 \item the sum weight is 0
 \item the product weight is 1
 \end{itemize}
Highest Weight Paths on WDAGs

Problem: find a path with the highest possible weight.

Solution:
- “Brute force” approach
 - i.e. simply enumerating all possible paths and comparing their weights
 is usually impractical (too many paths!)
- Instead, use the method of *dynamic programming* (‘The Fundamental Algorithm of Computational Biology’).
Highest Weight Paths on WDAGs (cont’d)

• Let $P_n = (v_0, v_1, \ldots, v_n)$ be a path of highest weight.

• Then for each $k < n$, the sub-path $P_k = (v_0, v_1, \ldots, v_k)$ must have highest weight of all paths ending at v_k, because

 – if $Q = (u_0, u_1, \ldots, v_k)$ were another path ending at v_k and having higher weight than P_k,

 – then the path $(Q, v_{k+1}, \ldots, v_n)$ would have weight

 $w((Q, v_{k+1}, \ldots, v_n)) = w(Q) + w((v_k, \ldots, v_n))$
 $> w(P_k) + w((v_k, \ldots, v_n)) = w(P_n),$

contradicting assumption that P_n has highest weight.
Subpaths of a highest-weight path can’t be improved:

If this has highest weight of all paths ending at v_5 then...

This must have highest weight of all paths ending at v_4
So generalize the problem as follows:
• find, for each vertex \(v \), the highest weight of all paths ending at \(v \) – call this \(w(v) \)

Can find \(w(v) \) in single pass through \(V \), as follows:
 – process the \(v \) in depth order (or any order in which parents precede children)
 – if \(v \) has no parents, \(w(v) = 0 \) (the only path ending at \(v \) is \((v)\)).
 – for any other \(v \), except for the path \((v)\) (which has weight 0), any path ending at \(v \) is of form \((v_0, v_1, \ldots, v_k, u, v)\). Then
 – \(u \) is a parent of \(v \), so \(w(u) \) has already been computed, and
 \[
 w((v_0, v_1, \ldots, v_k, u, v)) \leq w(u) + w((u,v))
 \]
 with equality for an appropriate choice of \(v_i \).
 – Therefore we may compute \(w(v) \) as

\[
 w(v) = \max(0, \max_{u \in \text{parents}(v)} (w(u) + w((u,v))))
\]
Example

Depth 0

Depth 1

Depth 2

Depth 3

Depth 4
$w(v)$ – depth 0 nodes
$w(v)$ – depth 1 nodes

Depth 0

Depth 1

Depth 2

Depth 3

Depth 4

v_0 0 0 0 0
v_2 3 1 1 -1
v_3 1 -2 -3 2
v_4 0 -5 3 2
v_5 2 1 0 0
v_6 -2 0 -3 2
v_7 -6 3 2 0
v_8 2 0 1 0
v_9 0 1 2 1
v_10 0 0 0 0
v_11 0 0 0 0
v_12 0 0 0 0
$w(v) – depth 2 nodes$
$w(v) – \text{depth 3 nodes}$
$w(v) - \text{depth 4 nodes}$
Highest Weight Paths on WDAGs (cont’d)

• To reconstruct best path, need “traceback” pointer to immediate predecessor of \(v \) in best path:

\[
T(v) = \begin{cases}
 v & \text{if } w(v) = 0 \\
 \arg \max_{u \in \text{parents}(v)} (w(u) + w((u,v))) & \text{if } w(v) \neq 0
\end{cases}
\]

– in preceding graph, \(T(v) \) is the parent on red edge coming into \(v \)
 • if more than one such edge, pick one at random;
 • if no such edge, \(T(v) = v \)

• Sometimes useful to record beginning of best path:

\[
B(v) = \begin{cases}
 v & \text{if } w(v) = 0 \\
 B(T(v)) & \text{if } w(v) \neq 0
\end{cases}
\]
Highest Weight Paths on WDAGs (cont’d)

• Then highest weight of any path in graph is

\[\max_{v \in V} (w(v)) \]

– updated as each node is visited
 • indicated by \[\square \] in preceding graph –
 and so doesn’t require additional pass through vertices

• if \(u = \arg\max_{v \in V} (w(v)) \), can reconstruct highest weight path by tracing back from \(u \), using \(T \):
 – path ends at \(u \);
 – immediate predecessor of \(u \) is \(T(u) \);
 – predecessor of \(T(u) \) is \(T(T(u)) \); etc.
 – stop when \(T(v) = v \).

• In preceding example, highest weight is 6 and \(u = v_{11} \)
Dynamic programming on WDAGs

Depth 0

Depth 1

Depth 2

Depth 3

Depth 4
Complexity of Dynamic Programming

- Time to find a best path is $O(|E| + |V|)$:
 - in initial pass, visit each node, and each edge into that node: $O(|E| + |V|)$
 - in traceback, visit subset of nodes, and unique edge from each node: $O(|V|)$

(Complexity to find all highest weight paths can be higher)

For very large graphs, even $O(|E| + |V|)$ may be unacceptable!
Complexity Analysis (cont’d)

• Space requirements:
 – If only want weight of best path, and beginning and end, then
 – don’t need $T(v)$, and
 – only need retain $w(v)$ and $B(v)$ until have processed all children of v (or when best path found so far ends at v).

 Space depends on graph structure, but usually << $O(|V|)$.

 – If want path itself, must store $T(v)$ $\forall v$
 – space = $O(|V|)$
 – \exists algorithms (for some graphs) to reduce this, but may take more time.
Implementing Dynamic Programming in a Computer Program

• Storing entire graph has space complexity = $O(|V| + |E|)$

• If graph has regular structure, can often “create” and process vertices and edges on the fly, without storing in memory
 – cf. edit graph (to be defined later) for aligning sequences
Same dynamic programming approach can be used to find:

1. Highest product weight path (if weights are ≥ 0)
2. Highest weight path that
 - starts in particular subset V' of vertices,
 - don’t consider paths that start outside V':
 i.e. when computing $w(v)$, don’t consider trivial path unless $v \in V'$
 - and/or ends in particular subset V''
 - only scan for the maximum $w(v)$ over V''
3. Sum of product weights of all paths ending at particular vertex
 - sum over all edges coming into v, instead of maximizing
 - this useful for probability calculations
 • Will use the above variants later!
Weighted Linked Lists (WLLs)

- **WLL** is linked list with weights on each edge – simplest kind of WDAG.
- Highest weight paths correspond to highest-scoring segments of WLL.
• Find these segments by dynamic programming
 – Much better than “brute force” algorithm!

• Beginning & end of best path determine path uniquely, so
 – traceback is unnecessary
 – single pass through list suffices to find best path.
Applications to Sequences

• A *sequence graph* of a sequence is linked list whose edges are labelled by sequence residues (in order):

• e.g. graph for sequence ACCGCTGCGAAG is:

![Sequence Graph Example](image-url)
Weighted Sequence Graphs

• If attach weight to each residue, sequence graph becomes a WLL.

• Highest weight paths correspond to highest-scoring segments of sequence.

• Useful for identifying segments with “atypical composition”
• For example:
 – Gives good way to find GC-rich regions in AT-rich thermophile genomes
 • generally correspond to RNA genes (Rob Klein & Sean Eddy)
 – AT-rich, purine-rich, pyrimidine-rich regions
 – Hydrophobic, acidic, or basic regions in protein sequences
• More broadly, can find regions enriched for sequence *motifs*:
 – CpG islands in mammalian genomes
 • positive weight (e.g. +17) to the first C of each CpG, and
 • negative weight (e.g. −1) to every other base
 (This approach was used in *Nature* human genome paper).
 – *horizontally transferred* regions
 – Regions rich in (known) transcription-factor motifs