Today’s Lecture

• Dynamic programming to find highest weight paths in WDAGs
Weighted Directed Graphs

• A **weighted directed graph** is
 – a directed graph \((V, E)\) together with
 – a function \(w\) from \(E\) to the real numbers,
 • i.e. with a numerical **weight** \(w(e)\) (which may be positive, negative, or 0) associated to each edge \(e\).

A weighted DAG is called a WDAG.

• The **(sum) weight of a path** is defined to be the sum of the weights on the edges of the path.
• Similarly, the **product weight of a path** is the product of the edge weights
 – usually only consider this when all weights are non-negative.

• weight of a path \(P\) is written \(w(P)\)

• For a path of length 0 (i.e. consisting of a single vertex):
 – the sum weight is 0
 – the product weight is 1
Highest Weight Paths on WDAGs

• **Problem:** find a path with the highest possible weight.

• **Solution:**
 – “Brute force” approach
 • i.e. simply enumerating all possible paths and comparing their weights
 is usually impractical (too many paths!)
 – Instead, use the method of *dynamic programming* (‘The Fundamental Algorithm of Computational Biology’).
Highest Weight Paths on WDAGs (cont’d)

• Let $P_n = (v_0, v_1, \ldots, v_n)$ be a path of highest weight.

• Then for each $k < n$, the sub-path $P_k = (v_0, v_1, \ldots, v_k)$ must have highest weight of all paths ending at v_k, because

 – if $Q = (u_0, u_1, \ldots, v_k)$ were another path ending at v_k and having higher weight than P_k,

 – then the path $(Q, v_{k+1}, \ldots, v_n)$ would have weight

$$w((Q, v_{k+1}, \ldots, v_n)) = w(Q) + w((v_k, \ldots, v_n))$$

$$> w(P_k) + w((v_k, \ldots, v_n)) = w(P_n),$$

contradicting assumption that P_n has highest weight.
Subpaths of a highest-weight path can’t be improved:

If this has highest weight of all paths ending at v_5 then...

This must have highest weight of all paths ending at v_4.

So generalize the problem as follows:

- find, for each vertex v, the highest weight of all paths ending at v – call this $w(v)$

Can find $w(v)$ in single pass through V, as follows:

- process the v in depth order (or any order in which parents precede children)
- if v has no parents, $w(v) = 0$ (the only path ending at v is (v)).
- for any other v, except for the path (v) (which has weight 0), any path ending at v is of form $(v_0, v_1, \ldots, v_k, u, v)$. Then
- u is a parent of v, so $w(u)$ has already been computed, and
 \[w((v_0, v_1, \ldots, v_k, u, v)) \leq w(u) + w((u,v)) \]
 with equality for an appropriate choice of v_i.
- Therefore we may compute $w(v)$ as

\[
 w(v) = \max(0, \max_{u \in \text{parents}(v)} (w(u) + w((u,v))))
\]
Example
$w(v) –$ depth 0 nodes
$w(v) –$ depth 1 nodes
$w(v) –$ depth 2 nodes
$w(v) –$ depth 3 nodes

Depth 0

Depth 1

Depth 2

Depth 3

Depth 4
$w(v) – \text{depth 4 nodes}$
To reconstruct best path, need “traceback” pointer to immediate predecessor of \(v \) in best path:

\[
T(v) = \begin{cases}
 v & w(v) = 0 \\
 \text{arg max} \ (w(u) + w((u,v)) & w(v) \neq 0 \\
\end{cases}
 \begin{cases}
 u \in \text{parents}(v)
 \end{cases}
\]

– in preceding graph, \(T(v) \) is the parent on red edge coming into \(v \)
 • if more than one such edge, pick one at random;
 • if no such edge, \(T(v) = v \)

Sometimes useful to record *beginning* of best path:

\[
B(v) = \begin{cases}
 v & w(v) = 0 \\
 B(T(v)) & w(v) \neq 0
\end{cases}
\]
Highest Weight Paths on WDAGs (cont’d)

• Then highest weight of any path in graph is
 \[\max_{v \in V} (w(v)) \]
 – updated as each node is visited
 • indicated by \boxed{\text{boxed}} in preceding graph –
 and so doesn’t require additional pass through vertices

• if \(u = \arg\max_{v \in V} (w(v)) \), can reconstruct highest weight path by tracing back from \(u \), using \(T \):
 – path ends at \(u \);
 – immediate predecessor of \(u \) is \(T(u) \);
 – predecessor of \(T(u) \) is \(T(T(u)) \); etc.
 – stop when \(T(v) = v \).

• In preceding example, highest weight is 6 and \(u = v_{11} \)
Dynamic programming on WDAGs
Complexity of Dynamic Programming

- Time to find a best path is \(O(|E| + |V|) \):
 - in initial pass, visit each node, and each edge into that node: \(O(|E| + |V|) \)
 - in traceback, visit subset of nodes, and unique edge from each node: \(O(|V|) \)

(Complexity to find all highest weight paths can be higher)

For very large graphs, even \(O(|E| + |V|) \) may be unacceptable!
Complexity Analysis (cont’d)

• Space requirements:
 – If only want *weight* of best path, and beginning and end, then
 – don’t need \(T(v) \), and
 – only need retain \(w(v) \) and \(B(v) \) until have processed all children of \(v \) (or when best path found so far ends at \(v \)).

 Space depends on graph structure, but usually \(\ll O(|V|) \).
 – If want path itself, must store \(T(v) \ \forall \ v \)
 – space = \(O(|V|) \)
 – \(\exists \) algorithms (for some graphs) to reduce this, but may take more time.
Implementing Dynamic Programming in a Computer Program

- Storing entire graph has space complexity = \(O(|V| + |E|) \)
- If graph has regular structure, can often “create” and process vertices and edges on the fly, without storing in memory
 - cf. edit graph (to be defined later) for aligning sequences
Same dynamic programming approach can be used to find:

1. Highest product weight path (if weights are ≥ 0)
2. Highest weight path that
 - starts in particular subset V' of vertices,
 - don’t consider paths that start outside V': i.e. when computing $w(v)$, don’t consider trivial path unless $v \in V'$
 - and/or ends in particular subset V''
 - only scan for the maximum $w(v)$ over V''
3. Sum of product weights of all paths ending at particular vertex
 - sum over all edges coming into v, instead of maximizing
 - this useful for probability calculations

• Will use the above variants later!