Lecture 6

• Algorithmic complexity

• Directed graphs, DAGs

• DAG structure

• Dynamic programming to find highest weight paths in WDAGs
Algorithmic Complexity

- Basic questions about an algorithm:
 - how long does it take to run?
 - how much space (RAM or disk space) does it require?
- Would like precise function $f(N)$, e.g.
 $$f(N) = .05 N^3 + 50.7 N^2 + 6.03 N$$
 for
 - running time in secs, or
 - space in kbytes,
 as function of the size N of input data set.
- But
 - tedious to derive &
 - depends on (often uninteresting – though important!) hardware & software implementation details.
Instead, more customary to give “the” **asymptotic complexity**, i.e. expression \(g(N) \) such that

\[
C_1 g(N) < f(N) < C_2 g(N)
\]

for some constants \(C_1 \) and \(C_2 \), and \(N \) large enough.

This is written \(O(g(N)) \), where notation \(O() \) means “up to an unspecified multiplicative constant”.

– e.g. for the \(f(N) \) above, the dominating term for large \(N \) is \(.05 N^3 \), so

 • can take \(g(N) = N^3 \)

 • asymptotic complexity = \(O(N^3) \).
• Can be misleading, since
 – for small N a different term may dominate
 • (e.g. 2d term in above example much more important for $N < 1000$)
 – size of constant may be quite important
 • (big difference between .05 and 5,000,000!)
 • e.g. BLAST and Smith-Waterman both $O(N^2)$, but size of constant enormously different
• but very useful as rough guide to performance.
• Cache misses (non-cache memory accesses) and disk accesses often dominate running time, yet are ‘invisible’ to complexity analysis (because affect constant factor only)
• Another limitation to complexity analysis:
 – time or space requirement may depend on specific characteristics of input data.

• Usually give “worst case” complexity
 – applies to the worst data set of a given size,

 \[\textit{but}\]

 – in biological situations the \textit{average biologically occurring case} is
 • more relevant
 • often much easier than worst case (which may never arise in practice), or even “average case” in some idealized sense.
• Proof that a problem is NP-hard
 – (has complexity very likely greater than any polynomial function of N and therefore effectively unsolvable for large N)

 can be useful in guiding search for more efficient algorithms

 but can also be misleading, since

 – we need *some* solution anyway, for data sets occurring in practice

 – average *biologically relevant* case may be quite manageable
Directed Graphs

• A directed graph is a pair \((V, E)\) where
 – \(V\) is a finite set of vertices, or nodes.
 – \(E\) is a set of ordered pairs (called edges) of vertices in \(V\).

• An edge \((v_i, v_j)\) is said to leave \(v_i\) and to enter \(v_j\).
 – \((v_i\) and \(v_j\) are vertices)

• in-degree of a vertex = \# edges entering it;
• out-degree = \# edges leaving it.
Example:

- $V = \{1,2,3,4,5,6\}$,
- $E = \{(1,2), (1,3), (2,4), (4,1), (5,3), (3,1)\}$
- Vertex 3 has in-degree 2 and out-degree 1.
Paths and Cycles

- A **path** of **length** k in G from u to u' (vertices) is
 - a sequence P of vertices (v_0, v_1, \ldots, v_k) such that
 - $v_0 = u$,
 - $v_k = u'$, and
 - (v_{i-1}, v_i) is an edge for $i = 1,2, \ldots, k$.
- A path can have length 0.
- We write $|P| = k$.
- A **cycle** is a path of length ≥ 1 from a vertex to itself.
- In example at right,
 - $(1,2,4)$ is a path,
 - $(1,3,5)$ is not, and
 - $(1,2,4,1)$ and $(1,3,1)$ are cycles.
• Can join
 – any path \((u, \ldots, v)\) from \(u\) to \(v\), to
 – any path \((v, \ldots, w)\) from \(v\) to \(w\)

to get a path \((u, \ldots, v, \ldots, w)\) from \(u\) to \(w\).
DAGs

- A *directed acyclic graph* (DAG) is a directed graph with no cycles.
- In a DAG, for distinct nodes v_i and v_j, we say
 - v_i is a *parent* of v_j, and v_j is a *child* of v_i, if
 - there is an edge (v_i, v_j)
 - v_i is an *ancestor* of v_j, and v_j is a *descendant* of v_i, if
 - there is a path from v_i to v_j
- In a DAG the length of a path cannot exceed $|V| - 1$,
 - (where $|V|$ = total # vertices in graph)
 because
 - in a path of length $\geq |V|$,
 - at least one vertex v would have to appear twice in the path;
 - but then there would be a path from v to v, i.e. a cycle.
Structure of DAGs

• Define the *depth* of a node v in V as:
 – the length of the longest path ending at v;
 by above, the depth is well-defined and $\leq |V| - 1$.

• *Every descendant w of a node v has higher depth than v:*
 If
 – $(u, ..., v)$ is path of length $n = \text{depth}(v)$ ending at v, and
 – $(v, ..., w)$ is path from v to w,
 then $(u, ..., v, ..., w)$ is a path of length $> n$ ending at w, so $\text{depth}(w) > n$.
• **Every node \(v \) of positive depth has a parent of depth exactly one less:**

 – Let \((u, ..., v', v)\) be path of length \(n = \text{depth}(v) \) ending at \(v \).

 – Then \(v' \) is a parent of \(v \).

 – Since \((u, ..., v')\) has length \(n - 1 \), \(\text{depth}(v') \geq n - 1 \).

 – Since also \(\text{depth}(v') < n \) (because \(v \) is a descendant of \(v' \)), \(\text{depth}(v') \) is exactly \(n - 1 \).

• **The nodes on any path are of increasing depth.**
Important special cases:

• A \textit{(rooted) tree} is a DAG which
 – has unique depth 0 node (the \textit{root}), \textit{and}
 – every other node has in-degree 1
 • (i.e. has a unique parent, of depth one less than that of the node).

• A \textit{binary tree} is a tree in which
 – every node has out-degree at most 2.

• A \textit{linked list} is a tree in which
 – every node has out-degree at most 1
 – or equivalently, a DAG in which \exists at most one node of each depth
binary tree

linked list

\begin{itemize}
 \item v_0
 \item v_1
 \item v_2
 \item v_3
 \item v_4
 \item v_5
 \item v_6
 \item v_7
 \item v_8
\end{itemize}
Remarks on Depth Structure

• For *dynamic programming* algorithm
 – we need an order \(v_1, v_2, \ldots, v_n \) for the vertices
 • (not a path!)
 in which parents appear before children.
 – From the above, *depth order*
 • (in which depth 0 nodes are listed first, then depth 1 nodes, etc.)
 is such an order.
 – In general there are many other such orders.

• We haven’t given constructive procedure for finding the depths of all vertices.
 – For an arbitrary DAG, can be done in \(O(|V| + |E|) \) time;
 – we omit algorithm, since for DAGs related to sequence analysis, the depth structure is obvious.
Weighted Directed Graphs

- A **weighted directed graph** is
 - a directed graph \((V, E)\) together with
 - a function \(w\) from \(E\) to the real numbers,
 - i.e. with a numerical **weight** \(w(e)\) (which may be positive, negative, or 0) associated to each edge \(e\).

A weighted DAG is called a WDAG.

- The (**sum**) **weight of a path** is defined to be the sum of the weights on the edges of the path.
- Similarly, the **product weight of a path** is the product of the edge weights
 - usually only consider this when all weights are non-negative.

- weight of a path \(P\) is written \(w(P)\)
- For a path of length 0 (i.e. consisting of a single vertex):
 - the sum weight is 0
 - the product weight is 1
Highest Weight Paths on WDAGs

- **Problem**: find a path with the highest possible weight.

- **Solution**:
 - “Brute force” approach
 - i.e. simply enumerating all possible paths and comparing their weights
 - is usually impractical (too many paths!)
 - Instead, use the method of *dynamic programming* (‘The Fundamental Algorithm of Computational Biology’).
• Let $P_n = (v_0, v_1, \ldots, v_n)$ be a path of highest weight.
• Then for each $k < n$, the sub-path $P_k = (v_0, v_1, \ldots, v_k)$ must have highest weight of all paths ending at v_k, because
 – if $Q = (u_0, u_1, \ldots, v_k)$ were another path ending at v_k and having higher weight than P_k,
 – then the path $(Q, v_{k+1}, \ldots, v_n)$ would have weight
 \[
 w((Q, v_{k+1}, \ldots, v_n)) = w(Q) + w((v_k, \ldots, v_n))
 > w(P_k) + w((v_k, \ldots, v_n)) = w(P_n),
 \]
 contradicting assumption that P_n has highest weight.
Subpaths of a highest-weight path can’t be improved:

If this has highest weight of all paths ending at \(v_5 \) then...

This must have highest weight of all paths ending at \(v_4 \)
• So generalize the problem as follows:
 • find, for *each* vertex v, the highest weight of all paths ending at v – call this $w(v)$
• Can find $w(v)$ in single pass through V, as follows:
 – process the v in depth order (or any order in which parents precede children)
 – if v has no parents, $w(v) = 0$ (the only path ending at v is (v)).
 – for any other v, except for the path (v) (which has weight 0), any path ending at v is of form $(v_0, v_1, \ldots, v_k, u, v)$. Then
 – u is a parent of v, so $w(u)$ has already been computed, and

 $$w((v_0, v_1, \ldots, v_k, u, v)) \leq w(u) + w((u,v))$$

 with equality for an appropriate choice of v_i.
 – Therefore we may compute $w(v)$ as

 $$w(v) = \max(0, \max_{u \in \text{parents}(v)} (w(u) + w((u,v))))$$
Example
$w(v)$ – depth 0 nodes
$w(v)$ – depth 1 nodes
$w(v) - \text{depth 2 nodes}$
$w(v) –$ depth 3 nodes
\(w(v) - \text{depth 4 nodes} \)
• To reconstruct best path, need “traceback” pointer to immediate predecessor of \(v \) in best path:

\[
T(v) = \begin{cases}
 v & \text{if } w(v) = 0 \\
 \arg \max_{u \in \text{parents}(v)} (w(u) + w((u,v))) & \text{if } w(v) \neq 0
\end{cases}
\]

– in preceding graph, \(T(v) \) is the \textit{parent} on \textit{red edge} coming into \(v \)
 • if more than one such edge, pick one at random;
 • if no such edge, \(T(v) = v \)

• Sometimes useful to record \textit{beginning} of best path:

\[
B(v) = \begin{cases}
 v & \text{if } w(v) = 0 \\
 B(T(v)) & \text{if } w(v) \neq 0
\end{cases}
\]
• Then highest weight of any path in graph is
 \[\max_{v \in V} (w(v)) \]
 – updated as each node is visited
 • indicated by [] in preceding graph –
 and so doesn’t require additional pass through vertices
• if \(u = \arg\max_{v \in V} (w(v)) \), can reconstruct highest weight
 path by tracing back from \(u \), using \(T \):
 – path ends at \(u \);
 – immediate predecessor of \(u \) is \(T(u) \);
 – predecessor of \(T(u) \) is \(T(T(u)) \); etc.
 – stop when \(T(v) = v \).

• In preceding example, highest weight is 6 and \(u = v_{11} \)
Dynamic programming on WDAGs

Depth 0

Depth 1

Depth 2

Depth 3

Depth 4
Complexity of Dynamic Programming

- Time to find a best path is $O(|E| + |V|)$:
 - in initial pass, visit each node, and each edge into that node: $O(|E| + |V|)$
 - in traceback, visit subset of nodes, and unique edge from each node: $O(|V|)$

(Complexity to find all highest weight paths can be higher)

For very large graphs, even $O(|E| + |V|)$ may be unacceptable!
• Space requirements:
 – If only want *weight* of best path, and beginning and end, then
 – don’t need $T(v)$, and
 – only need retain $w(v)$ and $B(v)$ until have processed all children of v (or when best path found so far ends at v).

 Space depends on graph structure, but usually $<< O(|V|)$.

 – If want path itself, must store $T(v) \forall v$
 – space $= O(|V|)$
 – \exists algorithms (for some graphs) to reduce this, but may take more time.
Implementing Dynamic Programming in a Computer Program

• Storing entire graph has space complexity = \(O(|V| + |E|) \)

• If graph has regular structure, can often “create” and process vertices and edges on the fly, without storing in memory
 – cf. edit graph (to be defined later) for aligning sequences
Same dynamic programming approach can be used to find:

1. Highest product weight path (if weights are \(\geq 0 \))

2. Highest weight path that
 - \textit{starts} in particular subset \(V' \) of vertices,
 - don’t consider paths that start outside \(V' \):
 i.e. when computing \(w(v) \), don’t consider trivial path unless \(v \in V' \)
 - and/or \textit{ends} in particular subset \(V'' \)
 - only scan for the maximum \(w(v) \) over \(V'' \)

3. Sum of product weights of all paths ending at particular vertex
 - \textit{sum} over all edges coming into \(v \), instead of \textit{maximizing}
 - this useful for probability calculations

• Will use the above variants later!