Today’s Lecture

« Multiple sequence alignment

« Improved scoring of pairwise alignments
— Affine gap penalties
— Profiles
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Multiple Alignment via
Dynamic Programming

« Higher dimension edit graph
— each dimension corresponds to a sequence; co-ordinates
labelled by residues
— Each edge corresponds to aligned column of residues (with
gaps).
— Can put arbitrary weights on edges; in particular,

« can make these correspond to probabilities under an evolutionary
model (Sankoff 1975).

— 1mplicitly assumes independence of columns
 Highest weight path through graph again gives optimal
alignment



Generalization to Higher Dimension

Each “cell” in 3-dimensional case looks like this:
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Each edge projects onto a gap or residue in each
dimension, defining an alignment column; e.g. red

edge defines Vv
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» # edges & # vertices are proportional to product of
sequence lengths.

— For k sequences of size N, is of order O(NK)
 impractical even for proteins (N ~ 300 to 500 residues) if k > 5:

300°=2.4 10%



Multiple alignments: paths in huge WDAGs

 To find high-scoring paths, need to
— reduce size of graph
— restrict allowed weighting schemes, and/or
— sacrifice optimality guarantees

« Durbin et al. discuss methods implementing these ideas:
— Hein
— Carillo-Lipman
— progressive alignment (e.g. Clustal)

 HMMs provide nice (but not guaranteed optimal) approach
for constructing multiple alignments
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Better Scoring Models

« Optimal alignment scoring depends on probabilistic
modelling (to be discussed later).

 [nherent limitation of dynamic programming: each

alignment column (edge in WDAG) scored independently
— biologically unrealistic, but

— required for dynamic programming to work!



« Two strategies to allow allow partial non-independence
while preserving dynamic programming framework:
— Enhance graph

— Allow scores to depend on position within the sequence (i.e. not
just on a BLOSUM-type score matrix)

* 50 some substitutions (of same residues) or gaps penalized more heavily
than others



Gap Penalties

TNAVAHVD----- DMPNAL
YEAAIQLQVTGVVVTDATL

 Usual scoring scheme assigns same penalty g to
each gap edge, so
— weights on extended gaps of size s are linear in s, I.e.
— total gap penalty gap(s) =s x Q.
— e.g. In above example, if each g = -6, total penalty on gap
would be
gap(®) = 5 x-6 = -30
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Gap Penalties

« Would like more flexible gap penalties:

 |n proteins, insertions & deletions are rare;
— but when occur, often consist of several residues, because
» they are in regions (loops) tolerant of length changes

— at DNA level, indels in protein coding sequence usually a
multiple of 3 nucleotides

» otherwise, would change reading frame
 In noncoding sequence,
— the most common indel size 1s 1

— but larger indels occur much more frequently than
multiple independent single-base indels
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« Can allow arbitrary convex gap penalties
— gap(s+t) > gap(s) + gap(t), where s and t are (integer) gap sizes
by extending edit graph:

— add edges corresponding to arbitrary length gaps from each vertex
to each horizontally or vertically downstream vertex

— (convexity condition prevents favoring two adjacent short gaps
over a single long gap).

Time complexity now O(MN(M+N))
— often unacceptable for moderate M, N.
— Also: how to choose appropriate weights? (need data to estimate!)
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Affine Gap Penalties

» Affine gap penalties:
— less general than arbitrary convex penalties, but
— more general than linear penalties.

« TWwO parameters:

— gap opening penalty g,
— gap extension penalty g,

« gap(n) (penalty for size n gap) Is then

go+nge :gi+(n_1)ge
where the gap initiating penalty g, = g, + .
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« Example: for BLOSUMG62, good penalties are
- 0;=-12,

— 0= -2
These perform much better than linear penalty
— (e.9.9=-6)

* N.B. Durbin et al. reverse g; and g,
— g; 1s called the ‘gap opening’ penalty

 Can obtain affine penalties using extension of
edit graph, retaining complexity O(MN):
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Edit Graph for Affine Gap Penalties

Double # vertices, creating left-right pair in place of each
original vertex. Each cell looks like this:

each left vertex has out-degree
and in-degree = 2

each right vertex has out-degree
and in-degree = 3

* gap-opening edges from left vertex to right vertex of each pair :
weight g,

* gap extension edges going horizontally or vertically between right
vertices : weight g,

» diagonal edges originate from either left or right vertex, but always

go to a left vertex.
15



 Paths In the augmented graph still
correspond to alignments

— can 3 more than one path for same alignment

— but highest scoring paths still give best
alignments

» Score assigned to size ngap isg, + n g,
— 1.e. affine penalty
« Smith-Waterman-Gotoh algorithm
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Profiles (position-specific scoring)
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« Profiles: Position-specific scoring scheme specifying score of each

possible substitution at each position of a sequence
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 This Is an important improvement!

— reflects fact that different parts of sequence may evolve
at different rates

* e.g. In proteins,
— Internal core region of tightly packed residues, or active
sites of enzyme, are more highly conserved,

— surface residues, particularly in loops, often less
conserved.

— S0 scores tend to be correlated (high scores in core, lower
on surface)
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Rates of amino acid exchange in mammalian proteins
by burial status
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« PSIBLAST approach:

— Initially compare guery sequence to database
sequences (using BLOSUM-type scoring matrix),

— build profile using initial matches
— rescan database using profile

» Optimal choice of
— substitution matrix,
— gap penalties, or
— profiles

depends on probabilistic modelling (to be
discussed later!)
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