Today’s Lecture

• Improved scoring of pairwise alignments
 – Affine gap penalties
 – Profiles
• Smith-Waterman special cases
Above path corresponds to following alignment (w/ lower case letters considered unaligned):

```
aCGTTGAATGAccca
```

```
gCAT−GAC−GA
```
Two strategies to allow partial non-independence while preserving dynamic programming framework:

- Enhance graph
- Allow scores to depend on position within the sequence (i.e. not just on a BLOSUM-type score matrix)
 - so some substitutions (of same residues) or gaps penalized more heavily than others
Gap Penalties

TNAVAHVD------DMPNAL
YEAAIQLQVTGVVVTDATL

• Usual scoring scheme assigns same penalty g to each gap edge, so
 – weights on extended gaps of size s are *linear* in s, i.e.
 – total gap penalty $\text{gap}(s) = s \times g$.
 – e.g. in above example, if each $g = -6$, total penalty on gap would be

$$\text{gap}(5) = 5 \times -6 = -30$$
Gap Penalties

• Would like more flexible gap penalties:
 • In proteins, insertions & deletions are rare;
 – but when occur, often consist of several residues, because
 • they are in regions (loops) tolerant of length changes
 – at DNA level, indels in protein coding sequence usually a multiple of 3 nucleotides
 • otherwise, would change reading frame
 • In noncoding sequence,
 – the most common indel size is 1
 – *but* larger indels occur much more frequently than multiple independent single-base indels
• Can allow arbitrary convex gap penalties
 – \(\text{gap}(s+t) \geq \text{gap}(s) + \text{gap}(t) \), where \(s \) and \(t \) are (integer) gap sizes

by extending edit graph:
 – add edges corresponding to arbitrary length gaps from each vertex to each horizontally or vertically downstream vertex
 – (convexity condition prevents favoring two adjacent short gaps over a single long gap).

Time complexity now \(O(MN(M+N)) \)
 – often unacceptable for moderate \(M, N \).
 – Also: how to choose appropriate weights? (need data to estimate!)
Affine Gap Penalties

- **Affine** gap penalties:
 - less general than arbitrary convex penalties, but
 - more general than linear penalties.
- Two parameters:
 - **gap opening** penalty g_o
 - **gap extension** penalty g_e
- $\text{gap}(n)$ (penalty for size n gap) is then
 \[g_o + n \cdot g_e = g_i + (n - 1) \cdot g_e \]
 where the gap **initiating** penalty $g_i = g_o + g_e$
• Example: for BLOSUM62, good penalties are
 – $g_i = -12$
 – $g_e = -2$

These perform much better than linear penalty
 – (e.g. $g = -6$)

• N.B. Durbin et al. reverse g_i and g_o
 – g_i is called the ‘gap opening’ penalty

• Can obtain affine penalties using extension of edit graph, retaining complexity $O(MN)$:
Edit Graph for Affine Gap Penalties

Double # vertices, creating left-right pair in place of each original vertex. Each cell looks like this:

• gap-opening edges from left vertex to right vertex of each pair: weight g_o

• gap extension edges going horizontally or vertically between right vertices: weight g_e

• diagonal edges originate from either left or right vertex, but always go to a left vertex.

each left vertex has out-degree and in-degree = 2

each right vertex has out-degree and in-degree = 3
• Paths in the augmented graph still correspond to alignments
 – can \exists more than one path for same alignment
 – but highest scoring paths still give best alignments
• Score assigned to size n gap is $g_o + n g_e$
 – i.e. affine penalty
• Smith-Waterman-Gotoh algorithm
Profiles (position-specific scoring)
The *Edit Graph* for a Pair of Sequences
Profiles: Position-specific scoring scheme specifying score of each possible substitution at each position of a sequence

From R. Luthy, I. Xenarios and P. Bucher, Improving the sensitivity of the sequence profile method Protein Sci. 3: 139-146 (1994)
• This is an important improvement!
 – reflects fact that different parts of sequence may evolve at different rates

• e.g. in proteins,
 – internal core region of tightly packed residues, or active sites of enzyme, are more highly conserved;
 – surface residues, particularly in loops, often less conserved.
 – so scores tend to be correlated (high scores in core, lower on surface)
Rates of amino acid exchange in mammalian proteins by burial status

- **H**: hydrophobic
- **P**: polar

Exchange Type
- H → H
- P → P
- P → H
- H → P

Burial
- Exposed
- Intermediate
- Buried

Saunders & Green Mol Biol Evol 2007 24:2632-2647; doi:10.1093/molbev/msm190
• PSIBLAST approach:
 – initially compare query sequence to database sequences (using BLOSUM-type scoring matrix),
 – build profile using initial matches
 – rescan database using profile

• Optimal choice of
 – substitution matrix,
 – gap penalties, or
 – profiles

 comes from LLR based on alignment data (target vs background)
Smith-Waterman special cases

- Various special cases are optimal path problems for *subgraphs* of edit graph:
- *Gap-free* alignments correspond to paths confined to a diagonal of edit graph
 - (i.e. subgraph without horizontal & vertical edges).
- Find *perfectly* matching segments using weights
 +1 for identical residue pair,
 -\(\infty\) (or large negative penalty) for mismatches or gaps.

Less efficient than “sorting pointers” method from lecture 1 / HW1.
The *Edit Graph* for a Pair of Sequences

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>C</th>
<th>G</th>
<th>T</th>
<th>T</th>
<th>G</th>
<th>A</th>
<th>A</th>
<th>T</th>
<th>G</th>
<th>A</th>
<th>C</th>
<th>C</th>
<th>C</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
</tr>
</tbody>
</table>

18
• Find *imperfect internal repeats* by searching edit graph of sequence against itself
 – i.e. the same sequence labels columns and rows

above (& not including) the main diagonal:
 – if include main diagonal, best path will be identity match to self
 – complexity = $O(N^2)$ where $N =$ sequence length.

Graph for finding imperfect internal repeats: