
Genome 540 Discussion
January 4th, 2024
Clifford Rostomily

Introductions

■ Who am I?
○ 2nd year Genome Sciences
○ Trapnell lab
○ Took this course last year
○ Gene

regulation/development
○ Single-cell genomics
○ Zebrafish
○ I like to ski/trail

run/mountain bike/fish

■ Who are you?
○ Name?
○ Department?
○ What you hope to take

away from this course?

Agenda

■ Homework advice
■ Choosing a language
■ C++ tips

Homework advice

Start Early!

#1

#1

#2

#3

#2

#3

#4

#5

● Start early
● Submit early

○ Ideally
before the
weekend
it’s due

Using A.I.

■ Do use it as a tool
○ Translating python to C++
○ Learning a new language
○ Debugging specific problems

■ What does this error mean?
○ Use it like a quicker version of stack overflow

■ Don’t ask it to do your assignment
○ You won’t learn anything
○ If it’s wrong, debugging might be harder than doing the

assignment

Write readable code - help me help you
■ Use intuitive variable/function names

x = 0 vs. number_of_friends = 0

■ Comments
○ Big picture

Function to compute number of friends from comment quality
○ Confusing stuff

this makes me feel like I have friends
num_friends = (a^-exp(24*b))/5 - (a^-exp(24*b))/5

■ Use lots of functions
■ Don’t make code hard to read for a negligible speed up

Also keep your code organized

■ Github for easy sharing etc.
■ Keep a nice file structure for your assignments

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000424

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000424

How to approach assignments

1. Understand the algorithm
2. Outline your code

a. Write skeleton code
3. Fill it in
4. Evaluate if things are working with small tests

a. E.g. Test that a fasta loads by creating a small fasta and printing it,
or test code on a small substring you know the answer to.

b. Try to include edge cases in your tests
5. Compare your results on the test data with diff

Choosing a language

Which language should I use?

■ You are free to choose
■ Most people use C++, C, or Python
■ What’s the difference…

Compiled vs. Interpreted Languages

Code
print(“hello world”)

Machine Code
for(i;i<10;i++){}

Output
> hello world

Machine
Code (0010101)

*** The following explanations are gross oversimplifications

https://www.youtube.com/watch?v=_C5AHaS1mOA

https://www.youtube.com/watch?v=_C5AHaS1mOA

Execution

Compiled vs. Interpreted Languages

Code
print(“hello world”)
x = 1
y = 2
z = x + y
print(z)

Compiler Machine Code
0101010100100101
0001010011111001
0100101001110101
0101001010010100
1010101000000111

● Compiler translates code into machine code
● Machine code can be run over and over (assuming correct

OS/architecture)

MyScript.c MyScript.o

CPU

Memory

Machine
Code

000101010
010010010
111010010
010010010
100100100

Execution

Compiled vs. Interpreted Languages

Code
print(“hello world”)
x = 1
y = 2
z = x + y
print(z)

Interpreter

CPU

Memory

● Program executed line by line at runtime
● Need an interpreter to run program

1.

2.
3.
4.
5.

Compiled vs. Interpreted Languages

Machine Code
for(i;i<10;i++){}

Compiled Interpreted

Input Entire program A single statement

Intermediate Machine code None

Speed Faster Slower

Debugging Errors reported after
compiling and running

Errors reported at runtime

Static vs. Dynamic, Strong vs. Weak
■ Python is a dynamic strongly typed language

○ Don’t need to declare type: x = 5

■ C++ is a static weakly typed language
○ Need to declare type: int x = 5;

Which language should I use?

■ Your choice
■ C++ is my recommendation
■ C++ will give the biggest improvement on the 1st

assignment
■ Python can work but you have to be careful with

memory
■ Python will be ~10x slower even if everything is perfect
■ Python will be easier to learn/write/debug

C++ Tips

C++

■ Derived from C
■ Supports classes and objects
■ Standardized by the

International Organization for
Standardization (ISO)

■ Used everywhere
Created by Bjarne Stroustrup in 1983.

“Hello World” in C++

helloworld.cpp
In terminal compile
helloworld.cpp to an

executable

Run the executable

Output:
Hello World!

Compiler

Desired
executable

name

Your script

Using an IDE

■ VSCode extensions can
handle compilation and
execution

All you have to do is hit play!

VariablePointer

Pointers
■ Pointers are memory addresses, which point to variables

0x7fffffffd79c 1

0x7fffffffd7a0 0x7fffffffd79cAddress of b

Value of b
(address of a)

int *b = &a int a = 1

Value of a

Address of a

Pointers

■ Use & to reference an address
■ Use * to dereference an address or declare a pointer

Arrays vs. Vectors
■ Vectors are like arrays, but they are dynamic
■ Vectors can be resized, arrays cannot
■ Adding new elements to a vector is slow and dynamic

resizing may take up more memory than is needed
○ You should reserve the amount of memory you need when

you declare a vector!!!

int my_array[3] = {1,2,3}; // d is an array of integers
std::vector<int> my_vector = {1,2,3}; // e is a vector of integers
my_vector.push_back(4); // add 4 to the end of my_vector
my_vector.pop_back(); // remove the last element of my_vector so that it is the same size as my_array
my_vector.reserve(100); // reserve space for 100 integers in my_vector

Pointers to arrays, and arrays of pointers

■ Pointer to an array
○ int (*pntr_array)[5]; // a pointer to an array of 5 ints

■ Array of pointers
○ int *pntr_array[5]; // an array of 5 pointers to integers

■ Pointer to a vector
○ std::vector<int>*

■ Vector of pointers
○ std::vector<int*>

Arrays are pointers to blocks of memory

■ Arrays just point to the start of a
memory block

■ Array indices are just pointer
arithmetic and dereferencing
combined

○ a[12] is the same as *(a + 12)
○ &a[3] is the same as a + 3

■ Large arrays should be
dynamically allocated (on the
heap)

■ Make sure you delete them

int n = some_large_number;
double * d = new double[n];

const char *word = “hello”;
word = hello
(word + 1) = ello
word[0] = h
*word = h
word[1] = e
*(word + 1) = e

delete[] d;

Structs are a custom data type in C++

■ Structs are like a very simple class
■ Used to store data
■ Can contain variables of any type (including pointers and

other structs)

struct my_struct {
 int my_int;
 double my_double;
 std::string my_string;
 std::vector<int> my_vector;

};

Reading Files

Namespaces and libraries

■ A namespace is a collection of libraries
■ The standard (std) namespace is the most

commonly used
○ Many other namespaces (e.g. boost, Qt, Eigen, OpenCV)

■ You shouldn’t need anything other than the
standard namespace for this course

Debugging

■ Print intermediate to the terminal to see why
something is breaking
○ Poor man’s debugger
○ std::cout << “value of x = “ << x << std::endl

■ …or you can use a debugger
○ VSCode has a decent debugger for C++ and you can step

through functions

Python Tips

Python tips

■ Numpy
■ Pandas
■ Cython
■ Faking pointers

○ Mutable types - https://realpython.com/pointers-in-python/
■ Slack me for other questions

https://realpython.com/pointers-in-python/

What do you want to learn about?
Topics for future discussion sections?
• Scalable and reproducible bioinformatics pipelines (Snakemake)
• General programming tips
• Specific languages: Python, C++, Unix tools
• Additional applications of HMMs
• Dynamic programming
• Machine learning
• Version Control/Github
• Jupyter Notebooks/Reproducibility

