Genome 540 Discussion

January 8th, 2024 Clifford Rostomily

Agenda

- Assignment #1
- Questions
- Random Stuff

Assignment #1

Assignment Overview

Read in two fasta files

- Track # non-alpha characters
- Also track base counts
- Combine the <u>3</u> sequences and store subseqs as a pointer array/vector
 - \circ Forward of seq1, forward and reverse of seq2 = 3
- Implement and run the suffix array algorithm
 - Returns a sorted list of pointers

Iterate through results

- Track longest match length of each seq1 suffix to either the forward or reverse strand of seq2
- Track the longest overall match

Fasta format

- File format for storing sequences
- Can store multiple sequences
- Sequences are preceded by a <u>single</u> header line denoted by a ">"

> my_sequence1 TCGATCGATGGCTTCGGATGCGCTTAG

> my_sequence2

GCTGCGCGAGAACAACGTAGCATGGC

Can be used to store protein and nucleic acid sequences

• The extension can tell you more about what is being stored

Extension +	Meaning +	Notes +			
fasta, fas, fa ^[9]	generic FASTA	Any generic FASTA file			
fna	FASTA nucleic acid	Used generically to specify nucleic acids			
ffn	FASTA nucleotide of gene regions Contains coding regions for a genome				
faa	FASTA amino acid	Contains amino acid sequences			
mpfa	FASTA amino acids Contains multiple protein sequences				
frn	FASTA non-coding RNA	-coding RNA Contains non-coding RNA regions for a genome, e.g. tRNA, rRNA			

https://en.wikipedia.org/wiki/FASTA_format

Fasta IUPAC ambiguity codes

Nucleic Acid Code +	Meaning +	Mnemonic +	
A	A	Adenine	
С	С	c ytosine	
G	G	Guanine	
Т	Т	Thymine	
U	U	Uracil	
(i)	i	inosine (non-standard)	
R	A or G (I)	pu R ine	
Y	C, T or U	pYrimidines	
к	G, T or U	bases which are Ketones	
М	A or C	bases with aMino groups	
S	C or G	Strong interaction	
W	A, T or U	Weak interaction	
В	not A (i.e. C, G, T or U)	B comes after A	
D	not C (i.e. A, G, T or U)	D comes after C	
н	not G (i.e., A, C, T or U)	H comes after G	
V	neither T nor U (i.e. A, C or G)	V comes after U	
N	ACGTU	Nucleic acid	
-	gap of indeterminate length		

Non-alphabetic characters

- Exclude the header line
- Exclude white space (e.g. spaces)
- Include only digits from seq position numbers

Small Example

	Steps:	Pointer array to suffixes TCAA CGA GA	Sorted A AA AGT	 Iterate through sorted list find the longest match to seq1 make a histogram of seq1 longest matches
Seq. 1: TCAA Seq. 2: ACTG Seq. 2: CAGT (re	AA TG GT (reverse	A ACTG CTG TG	AATG CAA CAGT CTG	 Things to consider: Multiple seq1 suffixes in a row Need to look above and below to find longest match
complement)		G CAGT AGT GT T	G GT T TCAA TG	Match Lengths: 1: 3 2: 1 The longest match length: 2 Number of match strings: 1

Questions?

Unless you specifically ask me not to bring it up I will try to cover common questions asked on slack during the next class discussion.

Random Stuff

The Burrows Wheeler Transform

Transformation						
1. Input	2. All rotations	3. Sort into lexical order	4. Take the last column	5. Output		
^banana\$	^BANANA\$ \$^BANANA A\$^BANAN NA\$^BANA ANA\$^BAN NANA\$^BA ANANA\$^B BANANA\$^	ANANA\$^B ANA\$^BAN A\$^BANAN BANANA\$^ NANA\$^BA NA\$^BANA ^BANANA\$ \$^BANANA	ANANA\$^B ANA\$^BAN A\$^BANAN BANANA\$^ NANA\$^BA NA\$^BANA ^BANANA\$ \$^BANANA	BNN^AA\$A		

 Used originally for compression
 The Bowtie aligner uses it for compression and indexing

Bowtie

Langmead, Trapnell, Pop, Salzberg (2009) Genome Biology