Genome 540 Discussion

January 15th, 2024
Clifford Rostomily
Agenda

- Assignment 1 comments/common issues
- Assignment 2
Some common issues on HW1

- Match length histogram logic is incorrect
 - Does a match length of 1 make sense for two 10Mb sequences?
- The position of the longest match is shifted by 1bp
- The description of the longest match is not included/incorrect
- The number of non-alphabetic characters is incorrect
 - Only count the sequence position numbers!
Some more comments on HW1

- **Match the template!!!**
- *gzip* your homework
 - *gzip* lastname_firstname_hw1.txt
- Include your name in the homework
 - lastname_firstname_hw1.txt.gz
- You only need to submit on the “real data”
Comparing your result to the template

- Write your program
- Run it on the test data
- Run a diff between your program and the template
 - If your program is correct the answers should be the same
 - If your program is formatted correctly it should be EXACTLY the same
 (up to the Program line, and excluding manually written responses and
 the header)
 - Diff your_name_hw1.txt template.txt
- If using VSCode you can use the select for compare tool:
 - https://semanticdiff.com/blog/visual-studio-code-compare-files/
Assignment #2
Part 1 - Write a program

- The program should:
 - Read in a fasta file
 - Determine the frequencies of the nucleotides and dinucleotides (based on the forward strand) and the length of the sequence
 - Generate 3 sequences of the same length as the input file using:
 - the length (equal frequency assumption)
 - nucleotide frequency (order 0-Markov)
 - dinucleotide frequency (order 1-Markov)
 - Save these sequences as fasta files
Equal Frequency Model

A: 0.25
T: 0.25
G: 0.25
C: 0.25
Order 0 Markov Model

seq: ACTGA
length = 5

A: 2
T: 1
G: 1
C: 1

\[\frac{5}{5} = 1 \]

Number of times each base occurs

A: 0.4
T: 0.2
G: 0.2
C: 0.2

Probability of observing each base
Order 1 Markov Model

seq: ACTGATGATGATGGTACA
Length = 15, Number of dinucleotides = 14

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>T</th>
<th>G</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>T</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>G</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Dinucleotide Frequencies
e.g. # AT = 2

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>T</th>
<th>G</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>.143</td>
<td>0</td>
<td>.143</td>
</tr>
<tr>
<td>T</td>
<td>.071</td>
<td>0</td>
<td>.214</td>
<td>0</td>
</tr>
<tr>
<td>G</td>
<td>.143</td>
<td>.071</td>
<td>.071</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>.071</td>
<td>.071</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Dinucleotide Probabilities
e.g. P(AT) = 0.143

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>T</th>
<th>G</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>.5</td>
<td>0</td>
<td>.5</td>
</tr>
<tr>
<td>T</td>
<td>.25</td>
<td>0</td>
<td>.75</td>
<td>0</td>
</tr>
<tr>
<td>G</td>
<td>.5</td>
<td>.25</td>
<td>.25</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>.5</td>
<td>.5</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Nucleotide Conditional Probabilities
e.g. P(T|A) = 0.5
Part 2 - Simulate Sequences

■ Using your program simulate 3 sequences from the mouse genomic region in HW1 using:
 ○ An equal frequency assumption
 ○ An order-0 Markov model
 ○ An order-1 Markov model

■ Output sequences should be the same length as the input

■ Store the sequences as fasta files
Part 3 - Run your HW1 on those seqs.

- Run your program from HW1 on each of those sequences
 - Sequence 1 should always be the 10Mb human region from HW1,
 - Sequence 2 should be your simulated sequence
Reminders

- HW2 due this Sunday, 11:59pm
- Please have your name in the filename of your homework assignment and match the template