Genome 540 Discussion

January 15th, 2024 Clifford Rostomily

Agenda

Assignment 1 comments/common issues
 Assignment 2

Some common issues on HW1

Match length histogram logic is incorrect

- Does a match length of 1 make sense for two 10Mb sequences?
- The position of the longest match is shifted by 1bp
- The description of the longest match is not included/incorrect
- The number of non-alphabetic characters is incorrect
 - Only count the sequence position numbers!

Some more comments on HW1

Match the template!!!

- <u>gzip</u> your homework
 - **gzip** lastname_firstname_hw1.txt
- Include your name in the homework
 - lastname_firstname_hw1.txt.gz
- You only need to submit on the "real data"

Comparing your result to the template

- Write your program
- Run it on the test data
- Run a diff between your program and the template
 - If your program is correct the answers should be the same
 - If your program is formatted correctly it should be EXACTLY the same (up to the Program line, and excluding manually written responses and the header)
 - Diff your_name_hw1.txt template.txt
- If using VSCode you can use the select for compare tool:
 - <u>https://semanticdiff.com/blog/visual-studio-code-compare-files/</u>

Assignment #2

Part 1 - Write a program

■ The program should:

- Read in a fasta file
- Determine the frequencies of the nucleotides and dinucleotides (based on the forward strand) and the length of the sequence
- Generate 3 sequences of the same length as the input file using:
 - the length (equal frequency assumption)
 - nucleotide frequency (order 0-Markov)
 - dinucleotide frequency (order 1-Markov)
- Save these sequences as fasta files

Equal Frequency Model

A: 0.25 T: 0.25 G: 0.25 C: 0.25

Order 0 Markov Model

seq: ACTGA length = 5

A: 2
T: 1
G: 1

$$finite{-}{5} = \begin{cases}
A: 0.4 \\
T: 0.2 \\
G: 0.2 \\
C: 0.2 \end{cases}$$

Number of times each base occurs

Probability of observing each base

Order 1 Markov Model

seq: ACTGATGATGGTACA Length = 15, Number of dinucleotides = 14

	А	Т	G	С
А	0	2	0	2
Т	1	0	3	0
G	2	1	1	0
С	1	1	0	0

Dinucleotide Frequencies e.g. # AT = 2

	А	Т	G	С
А	0	.143	0	.143
Т	.071	0	.214	0
G	.143	.071	.071	0
С	.071	.071	0	0
L	Din Pro	ucleo babi	otide lities	

e.g. P(AT) = 0.143

	А	Т	G	С
А	0	.5	0	.5
Т	.25	0	.75	0
G	.5	.25	.25	0
С	.5	.5	0	0

Nucleotide Conditional Probabilities e.g. P(T|A) = 0.5

Part 2 - Simulate Sequences

- Using your program simulate 3 sequences from the mouse genomic region in HW1 using:
 - An equal frequency assumption
 - An order-0 Markov model
 - An order-1 Markov model
- Output sequences should be the same length as the input
- Store the sequences as fasta files

Part 3 - Run your HW1 on those seqs.

- Run your program from HW1 on each of those sequences
 - Sequence 1 should always be the 10Mb human region from HW1,
 - Sequence 2 should be your simulated sequence

Reminders

HW2 due this Sunday, 11:59pm
 Please have your name in the filename of your homework assignment and match the template