Genome 540 Discussion

January 15th, 2024
Clifford Rostomily

Agenda

- Assignment 1 comments/common issues
- Assignment 2

Some common issues on HW1

- Match length histogram logic is incorrect
- Does a match length of 1 make sense for two 10 Mb sequences?
- The position of the longest match is shifted by 1 bp
- The description of the longest match is not included/incorrect
- The number of non-alphabetic characters is incorrect
- Only count the sequence position numbers!

Some more comments on HW1

- Match the template!!!
- gzip your homework
- gzip lastname_firstname_hw1.txt

■ Include your name in the homework

- lastname_firstname_hw1.txt.gz

■ You only need to submit on the "real data"

Comparing your result to the template

- Write your program
- Run it on the test data
- Run a diff between your program and the template
- If your program is correct the answers should be the same
- If your program is formatted correctly it should be EXACTLY the same (up to the Program line, and excluding manually written responses and the header)
- Diff your_name_hw1.txt template.txt
- If using VSCode you can use the select for compare tool:
- https://semanticdiff.com/blog/visual-studio-code-compare-files/

Assignment \#2

Part 1 - Write a program

- The program should:
- Read in a fasta file
- Determine the frequencies of the nucleotides and dinucleotides (based on the forward strand) and the length of the sequence
- Generate 3 sequences of the same length as the input file using:
- the length (equal frequency assumption)
- nucleotide frequency (order 0-Markov)
- dinucleotide frequency (order 1-Markov)
- Save these sequences as fasta files

Equal Frequency Model

A: 0.25
T: 0.25
G: 0.25
C: 0.25

Order O Markov Model

seq: ACTGA length $=5$

$$
\begin{aligned}
& \text { A: } 2 \\
& \mathrm{~T}: 1 \\
& \mathrm{G}: 1 \\
& \mathrm{C}: 1
\end{aligned} \div 5=\begin{aligned}
& \mathrm{A}: 0.4 \\
& \mathrm{~T}: 0.2 \\
& \mathrm{G}: 0.2 \\
& \mathrm{C}: 0.2
\end{aligned}
$$

Number of times each base occurs

Probability of
observing each base

Order 1 Markov Model

seq: ACTGATGATGGTACA
 Length $=15$, Number of dinucleotides $=14$

	A	T	G	C
A	0	2	0	2
T	1	0	3	0
G	2	1	1	0
C	1	1	0	0

Dinucleotide
Frequencies
e.g. \# AT = 2

	A	T	G	C
A	0	.143	0	.143
T	.071	0	.214	0
G	.143	.071	.071	0
C	.071	.071	0	0

Dinucleotide
Probabilities
e.g. $P(A T)=0.143$

	A	T	G	C
A	0	.5	0	.5
T	.25	0	.75	0
G	.5	.25	.25	0
C	.5	.5	0	0

Nucleotide
Conditional Probabilities e.g. $P(T \mid A)=0.5$

Part 2 - Simulate Sequences

- Using your program simulate 3 sequences from the mouse genomic region in HW1 using:
- An equal frequency assumption
- An order-0 Markov model
- An order-1 Markov model
- Output sequences should be the same length as the input
- Store the sequences as fasta files

Part 3 - Run your HW1 on those seqs.

- Run your program from HW1 on each of those sequences
- Sequence 1 should always be the 10 Mb human region from HW1,
- Sequence 2 should be your simulated sequence

Reminders

- HW2 due this Sunday, 11:59pm
- Please have your name in the filename of your homework assignment and match the template

