

Discussion Section 10

● HW 9

● Regular expressions

● sed

● AWK

● Version control (Git)

Homework 9 questions?

Homework 9 questions?

● In C++, use srand() and rand()

Homework 9 questions?

● In C++, use srand() and rand()
– srand() sets the seed, rand() generates a random

number using the seed

Homework 9 questions?

● In C++, use srand() and rand()
– srand() sets the seed, rand() generates a random

number using the seed
● For testing, you can use srand() to set the same seed

Homework 9 questions?

● In C++, use srand() and rand()
– srand() sets the seed, rand() generates a random

number using the seed
● For testing, you can use srand() to set the same seed
● For actual running, set to something like the system clock

time (i.e. time(NULL))

Homework 9 questions?

● In C++, use srand() and rand()
– srand() sets the seed, rand() generates a random

number using the seed
● For testing, you can use srand() to set the same seed
● For actual running, set to something like the system clock

time (i.e. time(NULL))
● rand() gives integers between 0 and RAND_MAX

Homework 9 questions?

● In C++, use srand() and rand()
– srand() sets the seed, rand() generates a random

number using the seed
● For testing, you can use srand() to set the same seed
● For actual running, set to something like the system clock

time (i.e. time(NULL))
● rand() gives integers between 0 and RAND_MAX

– to get a number between 0 and 1, just divide by RAND_MAX

Regular Expressions

● Strings that define a pattern, often used for
searching and matching

Regular Expressions

● Strings that define a pattern, often used for
searching and matching

● Many special operators to define patterns

Regular Expressions

● Strings that define a pattern, often used for
searching and matching

● Many special operators to define patterns
– '^', '$', '.', '*', '+', '?' to name a few

Regular Expressions

● Strings that define a pattern, often used for
searching and matching

● Many special operators to define patterns
– '^', '$', '.', '*', '+', '?' to name a few

● Examples:

Regular Expressions

● Strings that define a pattern, often used for
searching and matching

● Many special operators to define patterns
– '^', '$', '.', '*', '+', '?' to name a few

● Examples:
– 'a': anything with the letter 'a'

Regular Expressions

● Strings that define a pattern, often used for
searching and matching

● Many special operators to define patterns
– '^', '$', '.', '*', '+', '?' to name a few

● Examples:
– 'a': anything with the letter 'a'

– 'a.b': anything with the letters 'a' and 'b' separated
by any character

Regular Expressions

● Strings that define a pattern, often used for
searching and matching

● Many special operators to define patterns
– '^', '$', '.', '*', '+', '?' to name a few

● Examples:
– 'a': anything with the letter 'a'

– 'a.b': anything with the letters 'a' and 'b' separated
by any character

– '^a.*z$': anything that starts with the letter 'a' and
ends with the letter 'z'

Regular Expressions

● Strings that define a pattern, often used for searching
and matching

● Many special operators to define patterns
– '^', '$', '.', '*', '+', '?' to name a few

● Examples:
– 'a': anything with the letter 'a'

– 'a.b': anything with the letters 'a' and 'b' separated by any
character

– '^a.*z$': anything that starts with the letter 'a' and ends with
the letter 'z'

– '\b[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,}\b': email
addresses

sed (stream editor)

● Changes text (in file or piped directly to sed)

sed (stream editor)

● Changes text (in file or piped directly to sed)

● Most often used for substitution with the 's'
command (though there are other commands)

sed (stream editor)

● Changes text (in file or piped directly to sed)

● Most often used for substitution with the 's'
command (though there are other commands)
– sed 's/old/new/' filename

sed (stream editor)

● Changes text (in file or piped directly to sed)

● Most often used for substitution with the 's'
command (though there are other commands)
– sed 's/old/new/' filename

● If you want to know more, here's a really good
in-depth tutorial:
– http://www.grymoire.com/Unix/Sed.html

AWK

● Useful for handling tables of data in text format
(csv, tsv, etc.)

AWK

● Useful for handling tables of data in text format
(csv, tsv, etc.)

● Can both extract data and process it

AWK

● Useful for handling tables of data in text format
(csv, tsv, etc.)

● Can both extract data and process it
● Basic structure of an AWK command:

– BEGIN {stuff before you look at file}

{stuff while looking at file}

END {stuff after you're done with the file}

AWK

● Useful for handling tables of data in text format
(csv, tsv, etc.)

● Can both extract data and process it
● Basic structure of an AWK command:

– BEGIN {stuff before you look at file}

{stuff while looking at file}

END {stuff after you're done with the file}

● Same person has another good tutorial:
– http://www.grymoire.com/Unix/Awk.html

Version Control (Git)

● Version control is useful for a variety of reasons
that all boil down to keeping track of code and
changes to that code

● You can use Git (and other version control
systems) both on your own and in collaborative
projects

Solo Git

Keeping track of previous code

Old Code

Keeping track of previous code

Old Code

New Code/Bug Fixing

New Code

Keeping track of previous code

Old Code

New Code/Bug Fixing

New Code

Reasons to revert:

Keeping track of previous code

Old Code

New Code/Bug Fixing

New Code

Reasons to revert:

● New bug, better to restart from old code

Keeping track of previous code

Old Code

New Code/Bug Fixing

New Code

Reasons to revert:

● New bug, better to restart from old code

● Need to regenerate results with previous version
of code

Keeping track of previous code

Old Code

New Code/Bug Fixing

New Code

Reasons to revert:

● New bug, better to restart from old code

● Need to regenerate results with previous version
of code

checkout, revert, reset

Developing/maintaining public software

v1.0

Developing/maintaining public software

v1.0

New Feature

Developing/maintaining public software

Hotfixv1.0

New Feature

Developing/maintaining public software

Hotfixv1.0

New Feature

v2.0

Collaborative Git

Branches allow testing and parallel
collaboration

Group software development

Hotfixv1.0

New Feature

v2.0

Group software development

Hotfixv1.0

New Feature

v2.0

New Feature

Group software development

Hotfixv1.0

New Feature

v2.0

New Feature Bug Fix

New project/software, same starting point or
shared resources

Project A

New project/software, same starting point or
shared resources

Project A

Project B

Maybe I can
modify/use this code
for something else

New project/software, same starting point or
shared resources

Project A

Project B

Maybe I can
modify/use this code
for something else

Updated
Project A

New project/software, same starting point or
shared resources

Project A

Project B

Maybe I can
modify/use this code
for something else

Updated
Project A

Up-to-date
Project B

New project/software, same starting point or
shared resources

Project A

Project B

Maybe I can
modify/use this code
for something else

Updated
Project A

Up-to-date
Project B

Project C

Solo Commands

● Most important for solo work:
– Creating a repo (git init)

– Adding, deleting (git add, git rm)

– Committing (git commit [-m])

– Undoing changes (git reset [file])

– Checking what files you've changed (git status)

– Looking at the change log (git log [--stat] [-p])

– Ignoring files (.gitignore)

Collaboration Commands

● Most important for collaborations:
– Cloning a repo (git clone [address])

– Pushing/Pulling (git push/pull [branch])

– Safely undoing changes for everyone (git revert [commit])

– Making a new branch (git branch [name])

– Switching branches (git checkout [name])

– Merging branches (git merge [name])

	Slide 1
	page2 (1)
	page2 (2)
	page2 (3)
	page2 (4)
	page2 (5)
	page2 (6)
	page2 (7)
	page3 (1)
	page3 (2)
	page3 (3)
	page3 (4)
	page3 (5)
	page3 (6)
	page3 (7)
	page3 (8)
	page4 (1)
	page4 (2)
	page4 (3)
	page4 (4)
	page5 (1)
	page5 (2)
	page5 (3)
	page5 (4)
	Slide 25
	Slide 26
	page8 (1)
	page8 (2)
	page8 (3)
	page8 (4)
	page8 (5)
	page8 (6)
	page9 (1)
	page9 (2)
	page9 (3)
	page9 (4)
	Slide 37
	Slide 38
	page12 (1)
	page12 (2)
	page12 (3)
	page13 (1)
	page13 (2)
	page13 (3)
	page13 (4)
	page13 (5)
	Slide 47
	Slide 48

