
  

Discussion Section 10

● HW 9

● Regular expressions

● sed

● AWK

● Version control (Git)
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Homework 9 questions?

● In C++, use srand() and rand()
– srand() sets the seed, rand() generates a random 

number using the seed
● For testing, you can use srand() to set the same seed
● For actual running, set to something like the system clock 

time (i.e. time(NULL))
● rand() gives integers between 0 and RAND_MAX

– to get a number between 0 and 1, just divide by RAND_MAX
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Regular Expressions

● Strings that define a pattern, often used for searching 
and matching

● Many special operators to define patterns
– '^', '$', '.', '*', '+', '?' to name a few

● Examples:
– 'a': anything with the letter 'a'

– 'a.b': anything with the letters 'a' and 'b' separated by any 
character

– '^a.*z$': anything that starts with the letter 'a' and ends with 
the letter 'z'

– '\b[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,}\b': email 
addresses
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sed (stream editor)

● Changes text (in file or piped directly to sed)

● Most often used for substitution with the 's' 
command (though there are other commands)
– sed 's/old/new/' filename

● If you want to know more, here's a really good 
in-depth tutorial:
– http://www.grymoire.com/Unix/Sed.html
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AWK

● Useful for handling tables of data in text format 
(csv, tsv, etc.)

● Can both extract data and process it
● Basic structure of an AWK command:

– BEGIN {stuff before you look at file}

{stuff while looking at file}

END {stuff after you're done with the file}

● Same person has another good tutorial:
– http://www.grymoire.com/Unix/Awk.html



  

Version Control (Git)

● Version control is useful for a variety of reasons 
that all boil down to keeping track of code and 
changes to that code

● You can use Git (and other version control 
systems) both on your own and in collaborative 
projects
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Keeping track of previous code

Old Code

New Code/Bug Fixing

New Code

Reasons to revert:

● New bug, better to restart from old code

● Need to regenerate results with previous version 
of code

checkout, revert, reset
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Collaborative Git
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New Feature

v2.0

New Feature Bug Fix
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New project/software, same starting point or 
shared resources

Project A

Project B

Maybe I can 
modify/use this code 
for something else

Updated
Project A

Up-to-date
Project B

Project C



  

Solo Commands

● Most important for solo work:
– Creating a repo (git init)

– Adding, deleting (git add, git rm)

– Committing (git commit [-m])

– Undoing changes (git reset [file])

– Checking what files you've changed (git status)

– Looking at the change log (git log [--stat] [-p])

– Ignoring files (.gitignore)



  

Collaboration Commands

● Most important for collaborations:
– Cloning a repo (git clone [address])

– Pushing/Pulling (git push/pull [branch])

– Safely undoing changes for everyone (git revert [commit])

– Making a new branch (git branch [name])

– Switching branches (git checkout [name])

– Merging branches (git merge [name])
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