Lecture 10

- Local vs global alignments
- Alignment scoring
 - 'Background' models for proteins
 - Failure of equal frequency assumption
 - Score matrices
 - Profiles
- Statistical significance

Above path corresponds to following alignment (w/ lower case letters considered unaligned):

aCGTTGAATGAccca gCAT-GAC-GA

Alignment algorithms

- *Smith-Waterman* algorithm to find highest scoring alignment
 - = dynamic programming algorithm to find highestweight path
 - is a *local* alignment algorithm:
 - finds alignment of subsequences rather than the full sequences.
- Can process nodes in any order in which parents precede children. Commonly used alternatives are
 - depth order
 - row order
 - column order

- If constrain path to
 - start at upper-left corner node and
 - extend to lower-right corner node,

get a *global* alignment instead

- This sometimes called *Needleman-Wunsch algorithm*
 - (altho original N-W alg treated gaps differently)
- \exists variants which constrain path to
 - start on the left or top boundary,
 - extend to the right or bottom boundary.

Local vs. Global Alignments: Biological Considerations

- Many proteins consist of multiple 'domains' (modules), some of which may be present
 - with similar, but not identical sequence
 - in many other proteins
 - e.g. ATP binding domains, DNA binding domains, protein-protein interaction domains ...

Need *local alignment* to detect presence of similar regions in otherwise dissimilar proteins.

- Other proteins consist of single domain evolving as a unit
 - e.g. many enzymes, globins.
 - Global alignment sometimes best in such cases
 - ... but even here, some regions are more highly conserved (more slowly evolving) than others, and most sensitive similarity detection may be local alignment.
- Even local alignments can be misleading! (e.g. two nearby shared domains separated by non-homologous sequence)

3-D structures of rat Rab Geranylgeranyl Transferase complexed with REP-1, + paralogs. *adapted from* Rasteiro and Pereira-Leal *BMC Evolutionary Biology* 2007 7:140

Multidomain architecture of representative members from all subfamilies of the mammalian RGS protein superfamily.

from www.unc.edu/~dsiderov/page2.htm

7

Similar considerations apply to aligning DNA sequences:

- (semi-)global alignment may be preferred for aligning
 cDNA to genome
 - recently diverged genomic sequences (e.g. human / chimp) but local alignment often gives same result!
- between more highly diverged sequences, have
 - rearrangements (or large indels) in one sequence vs the other,
 - variable distribution of sequence conservation,

& these usually make local alignments preferable.

• Genomic alignments are nearly always done in 'chunks'

Above path corresponds to following alignment (w/ lower case letters considered unaligned):

aCGTTGAATGAccca gCAT-GAC-GA

Weights on Edit Graphs

- Edge weights correspond to scores on alignment columns.
- Highest weight path corresponds to highest-scoring alignment for that scoring system.
- Weights may be assigned using
 - a substitution score matrix
 - assigns a score to each possible pair of residues occurring as alignment column
 - or *profile*
 - scores specific to a particular sequence

and

- a gap penalty
 - assigns a score to column consisting of residue opposite a gap.
- Example for protein sequences: BLOSUM62

Alignment Scoring

- Optimal alignment scoring depends on probabilistic modelling (e.g. LLR scores)
- Default approach:
 - 1. each alignment column (edge in WDAG) is scored independently
 - \rightarrow an independence assumption for probability model
 - Score depends only on the residues that are present (via a BLOSUM-type score matrix) i.e. independently of position within sequence

'Background' models for *protein* sequences

- The *independence* assumption is (usually) OK
 - -Main violation: low complexity regions

• The equal frequency assumption is not

Failure of equal frequency assumption for proteins

AMINO ACID	FREQUENCY.	# SYNON CODONS.
L	.093	6
A	.075	4
S	.072	6
G	.069	4
V	.065	4
E	.063	2
K	.059	2
Т	.058	4
Ι	.057	3
D	.053	2
R	.052	6
Р	.049	4
N	.045	2
F	.041	2
Q	.040	2
Y	.032	2
M	.024	1
Н	.022	2
С	.017	2
W	.013	1

Hypotheses to explain correlation between frequency and # codons

- (*Neutralist*):
 - Nucleotide sequences that encode proteins are on average close to random,
 - so amino acid freqs are proportionate to codon freqs in random DNA.
- (Selectionist):
 - The genetic code evolved concurrently with early proteins, and
 - is adapted so that the most useful amino acids are encoded by the most codons.
- The truth is probably some combination of these!
 - Dependence of aa composition on genomic G+C content is consistent with neutralist hypothesis

Copyright 1999 Access Excellence @ the National Health Museum. All rights reserved

The Genetic Code

Deviations from 'randomness'

- Compute, for each residue r, the ratio obs_r / exp_r of
 - the observed frequency obs_r, to
 - the expected frequency \exp_r if coding sequences were random:

$$\exp_r = (\# \text{codons encoding } r) / 61$$

Amino Acid	Obs/Exp	1 st codon	2^{nd} codon	3 rd codon	# codons
		base	base	base	
E	1.92	G	А	R	2
K	1.80	А	А	R	2
D	1.62	G	А	Y	2
М	1.46	А	Т	G	1
Ν	1.37	А	А	Y	2
F	1.25	Т	Т	Y	2
Q	1.22	С	А	R	2
Ι	1.16	А	Т	Not G	3
А	1.14	G	С	N	4
G	1.05	G	G	N	4
V	.99	G	Т	N	4
Y	.98	Т	А	Y	2
L	.95	C(T)	Т	N	6
Т	.88	А	С	N	4
W	.79	Т	G	G	1
Р	.74	С	С	N	4
S	.73	T(A)	C(G)	N	6
Н	.67	С	А	Y	2
R	.53	C(A)	G	N	6
С	.52	Т	G	Y	2

Obs/Exp Ratios

- All observed values are within factor of 2 of expected;
 - last column suggests trend towards "correcting" disparate # codons
- At codon position 1,
 - purines (A and G) predominate among over-represented amino acids,
 - pyrimidines (*C* and *T*) among under-represented amino acids.
- At codon position 2,
 - -A and T predominate among over-represented amino acids,
 - *C* and *G* among under-represented amino acids.
- Hypotheses to explain *RWR* codon preference:
 - (Neutralist) Vestige of ancestral code? (Shepherd)
 - (Selectionist) More efficiently translated?

BLOSUM62 Score Matrix

GAP -12 -2

GHILKM R Ε Ρ S Α Ν D С 0 F Т W Y V В Ζ Х * 0 -1 -1 0 -2 -1 -1 -1 -1 -2 -1 0 - 3 - 20 -2 -1 4 -1 -2 -2 1 0 - 4А 5 0 -2 -31 0 -2 0 -3 -2 2 -1 -3 -2 -1 -1 -3 -2 -3 -1 R -1 0 - 1 - 46 1 -3 0 0 1 -3 -3 0 -2 -3 -2 1 0 -4 -2 -3 3 N - 20 0 0 - 1 - 46 -3 2 -1 -1 -3 -4 -1 -3 -3 -1 0 -1 -4 -3 -3 D - 2 - 21 0 4 1 - 1 - 4-3 9 -3 -4 -3 -3 -1 -1 -3 -1 -2 -3 -1 -1 -2 -2 -1 -3 -3 -2 -4 0 - 3 - 3С 5 2 -2 0 -3 -2 0 -3 -1 0 -1 -2 -1 -2 0 0 -3 1 0 -1 1 0 3 - 1 - 40 2 - 4E -1 \cap 2 5 -2 0 - 3 - 31 -2 -3 -1 0 -1 -3 -2 -21 4 - 1 - 40 -1 -3 -2 -2 6 -2 -4 -4 -2 -3 -3 -2 0 - 2 - 2 - 3 - 3 - 1 - 2 - 1 - 4G Ο -2 0 -2 8 -3 -3 -1 -2 -1 -2 -1 -2 -2 1 - 1 - 32 -3 н -2 0 0 0 0 - 1 - 41 2 -3 0 -3 -2 -1 -3 -1 I -1 -3 -3 -3 -1 -3 -3 -4 -3 4 3 -3 -3 -1 -4 L -1 -2 -3 -4 -1 -2 -3 -4 -3 2 4 -2 2 0 -3 -2 -1 -2 -1 1 - 4 - 3 - 1 - 41 1 -2 -1 -3 -2 5 -1 -3 -1 K -1 2. 0 - 1 - 30 -1 -3 -2 -2 0 1 - 1 - 41 M - 1 - 1 - 2 - 3 - 10 - 2 - 3 - 22 -1 5 0 -2 -1 -1 -1 -1 1 -3 -1 -1 -4 F -2 -3 -3 -3 -2 -3 -3 -1 0 0 -3 0 6 - 4 - 2 - 2 1 3 - 1 - 3 - 3 - 1 - 4 P -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4 7 -1 -1 -4 -3 -2 -2 -1 -2 -4 0 -1 -2 -2 0 -1 -2 -1 1 -3 -2 -2 1 -1 0 4 S 1 0 -1 0 0 0 0 - 40 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1 Т 0 - 11 5 -2 -2 0 -1 -1 0 - 4₩ -3 -3 -4 -4 -2 -2 -3 -2 -2 -3 -2 -3 -1 1 -4 -3 -2 11 2 - 3 - 4 - 3 - 2 - 4Y -2 -2 -2 -3 -2 -1 -2 -3 2 -1 -1 -2 -1 3 -3 -2 -2 2 7 -1 -3 -2 -1 -4 0 -3 -3 -3 -1 -2 -2 -3 -3 3 1 -2 1 -1 -2 -2 0 -3 -1 4 -3 -2 -1 -4 V 0 -3 -4 0 -3 -3 -2 4 - 3 -1 0 -1 -4 -3 -3 B -2 -1 3 0 1 4 1 -1 - 43 4 -2 0 -3 -3 1 -3 1 -1 -3 -1 0 -1 -3 -2 -27 - 1 00 1 4 -1 -4 0 -1 -1 -1 -2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -2 0 0 -2 -1 -1 -1 -1 -1 -4 Х 1 • Matrix entries are of form

 $M(r, s) = \log_{a}(h_{r,s} / b_{r,s}) \text{ (rounded to int) where}$ $h_{r,s} = \text{freq of } \frac{r}{s} \text{ in homologous* seq alignments}$ * `62` refers to specific set of homologue alignments $b_{r,s} = \text{freq of } \frac{r}{s} \text{ in `background' (random) alignments}$ $a \text{ (the logarithm base)} = \sqrt{2} \text{ (`half bits')}$

- amino acid pairs with positive scores tend to be
 - chemically similar
 - in *same row or col* of genetic code table

Copyright 1999 Access Excellence @ the National Health Museum. All rights reserved

The Genetic Code

Improved scoring methods

- Ways to allow *partial* non-independence while preserving dynamic programming framework:
 - 1. Allow scores to depend on position within the sequence
 - so some substitutions (of same residues) or gaps penalized more heavily than others
 - like a site model!
 - 2. Enhance graph
 - Allows 'memory' of preceding columns

Profiles (position-specific scoring)

- Different parts of sequence may evolve at different rates
- In proteins
 - conserved functional motifs
 - structural constraints:
 - internal core region of tightly packed residues are more highly conserved;
 - surface residues, particularly in loops, often less conserved.

Conserved Domain in RecR and Class I Topisomerases

RLAEEKITEVILATNPTVEGEATANYIAELC RecR RLODDOVTEVILATNPNIEGEATAMYISRLL RecM **RVDDVGITEVIIATDPNTEGEATATYLVRMV** RecR TrsI IFKENKIDEVIIATDPAREGENIAYKILNQL KQLAEKADHIYLATDLDREGEAIAWRLREVI TOP1 AELLKQANTIIVATDSDREGENIAWSIIHKA ORF1 KDALKDADELILATDEDREGKVISWHLLQLL TOP1 TOP1 TIFDKRVKTIILATDAAAEGEYIGRNILYRL TOP3 KREARNADYLMIWTDCDREGEYIGWEIWQEA KRFLHEASEIVHAGDPDREGQLLVDEVLDYL TOP3 RGYR RNLAVEADEVLIGTDPDTEGEKIAWDLYLAL

CONSENSUS xxxxxxxXU&uatDxxxEGexxxxXUxxxu

Consensus key:

Uppercase: all residues chemically similar

lowercase: most are

U,u: bulky aliphatic (I,L,V)

From RL Tatusov, SF Altschul, and EV Koonin, PNAS 91: 12091-12095

&: bulky hydrophobic (I,L,V,M,F,Y,W)

Rates of amino acid exchange in mammalian proteins by burial status

Copyright restrictions may apply.

The Edit Graph for a Pair of Sequences

• *Profiles: Position-specific* scoring scheme specifying score of each possible substitution at each position of a sequence

c											
	Cona	a A	С	D	Ε	\mathbf{T}^{*}	V	W	Ŷ	Open	Ext
	G	7	-14	- 1	-5	6	4	-34	-22	28	28
ļ	Р	5	-26	4	1	1	- 4	-48	-31	28	28
	\mathbf{L}	-1.8	-31	-40	-35	-16	13	-31	-9	100	100
1	T	7	-21	-4	-6	10	- 3	-38	-2.8	100	100
	E	6	-37	11	12	2	-10	-61	~ 3.8	100	100
Ŧ	A	5	-34	3	4	1	-8	-48	-34	100	100
	Ε	0	- 53	26	31	-5	-29	-60	-42	100	100
	R	-11	-45	-11	-13	-3	-21	-2	- 3.3	100	100
	Т	4	-28	-2	-1	8	7	-51	-24	100	100
	М	-7	-47	-6	-6	- 3	-6	-35	-26	100	1.0.0
	V	0	-20	-22	-36	2	41	-56	-27	100	100
	К	- 9	-44	-1.1	-11	0	-5	-29	-31	100	100
	N	5	-27	7	б	8	-11	-40	-32	100	100
	A	7	-27	- 4	-6	4	5	-46	-31	100	1.0.0
	W	-47	-69	-58	-60	-40	-49	139	- 6	100	100
	G	11	-31	5	1	3	-5	-65	-43	100	100
	К	- 2	-46	5	8	-1	-23	-49	-45	100	100
	V	-4	-23	-27	-45	-2	34	-48	-1.8	100	100
	L	- 3	- 9	-6	-5	-3	3	-3	-1	26	26
	Ν	- 4	-26	3	2	-4	-19	-31	- 9	26	26
	A	4	-16	0	1	2	-12	-40	-10	26	26
	н	0	-30	14	10	3	-15	-41	-21	100	100
	I	-2	-20	-18	-23	-1	17	-50	-11	100	100

From R. Luthy, I. Xenarios and P. Bucher, Improving the sensitivity of the sequence profile method *Protein Sci.* 3: 139-146 (1994)

- The *scores* are *position-specific* LLRs (like a site model!):
- Instead of

$$M(r, s) = \log_{a}(h_{r,s} / b_{r,s}) \text{ where}$$
$$h_{r,s} = \text{freq of } \frac{r}{s} \text{ in homologous seq alignments}$$
$$b_{r,s} = \text{freq of } \frac{r}{s} \text{ in 'background' (random) alignments}$$

• take, for *i*-th row (with residue r_i)

$$-M_{i}(s) = \log_{a}(h_{i,s} / b_{i,s})$$
 where

$$h_{i,s} = \text{freq of } s \text{ aligned to } r_{i} \text{ in homologue alignments}$$

$$b_{i,s} = \text{freq of } s \text{ in random alignments}$$

- PSIBLAST approach:
 - 1. initially compare query sequence to database sequences (using BLOSUM-type scoring matrix),
 - 2. build profile using matches
 - 3. rescan database using profile
 - 4. iterate 2 & 3 until ...

Karlin / Altschul for sequence alignments

• For LLR-based alignment scoring

- *i.e.* $s(r) = \log_a(t_r / b_r)$, where *r* is an alignment column,

the expected # local alignments of score $\geq S$ for (random) seqs of length *M*, *N* is

 $\approx MNK a^{-S}$

for some constant *K* (not depending on *S*)

- Note that $a^{-S} = a^{-LLR} = 1 / LR$
- K-A developed theory for *ungapped* alignments, but empirical studies suggest it applies more broadly
 - Estimate K from alignments to random sequence