
Lecture 11

• Indel penalties

• Word nucleation algorithms

– BLAST

• Genome alignment

1

2

A C G T T G A A T G A C C C A

G

C

A

T

G

A

C

G

A

aCGTTGAATGAccca
gCAT-GAC-GA

Above path corresponds to following alignment (w/ lower case letters

considered unaligned):

3

Gap Penalties

• Usual scoring scheme assigns same penalty g to

each gap edge, so

– weights on extended gaps of size s are linear in s, i.e.

– total gap penalty gap(s) = s  g.

– e.g. in above example, if each g = -6, total penalty on gap

would be

gap(5) = 5  -6 = -30

TNAVAHVD-----DMPNAL
YEAAIQLQVTGVVVTDATL

4

• Would like more flexible gap penalties:

• In proteins, insertions & deletions are rare;

– but when occur, often consist of several residues, because

• they are in regions (loops) tolerant of length changes

– at DNA level, indels in protein coding sequence usually a

multiple of 3 nucleotides

• otherwise, would change reading frame

• In noncoding DNA sequence,

– the most common indel size is 1

– but larger indels occur much more frequently than

multiple independent single-base indels

5

• Can allow arbitrary convex gap penalties

– gap(s+t)  gap(s) + gap(t), where s and t are (integer) gap sizes

by extending edit graph:

– add edges corresponding to arbitrary length gaps from each vertex

to each horizontally or vertically downstream vertex

– (convexity condition prevents favoring two adjacent short gaps

over a single long gap).

Time complexity now O(MN(M+N))

– often unacceptable for moderate M, N.

– Also: how to choose appropriate weights? (need data to estimate!)

6

Affine Gap Penalties

• Affine gap penalties:

– less general than arbitrary convex penalties, but

– more general than linear penalties.

• Two parameters:

– gap opening penalty go

– gap extension penalty ge

• gap(n) (penalty for size n gap) is then

go + n ge = gi + (n – 1) ge

where the gap initiating penalty gi = go + ge

7

• Example: for BLOSUM62, good penalties are

– gi = -12,

– ge = -2

These perform much better than linear penalty

– (e.g. g = -6)

• N.B. Durbin et al. reverse gi and go

– gi is called the ‘gap opening’ penalty

• Can obtain affine penalties using extension of

edit graph, retaining complexity O(MN):

8

Edit Graph for Affine Gap Penalties
Double # vertices, creating left-right pair in place of each

original vertex. Each cell looks like this:

• gap-opening edges from left vertex to right vertex of each pair :

weight go

• gap extension edges going horizontally or vertically between right

vertices : weight ge

• diagonal edges originate from either left or right vertex, but always

go to a left vertex.

ge

ge

ge

gego

go

go

go

each left vertex has out-degree

and in-degree = 2

each right vertex has out-degree

and in-degree = 3

9

• Paths in the augmented graph still
correspond to alignments

– can  more than one path for same alignment

– but highest scoring paths still give best
alignments

• Score assigned to size n gap is go + n ge

– i.e. affine penalty

• ‘Smith-Waterman-Gotoh algorithm’

Finding values for gap penalties

• Direct definition as LLR seems problematic

– what are ‘random alignments’?

• Empirical approach: Given a score matrix (e.g.

BLOSUM62), for various (go , ge) choices

– Align real sequences to known homologues &

simulated sequences

– Measure score discrimination (E-values of

homologue alignments)

– Find (go , ge) giving best discrimination

10

11

• When there are multiple close indels,

finding the correct alignment can be

problematic:

Gap attraction

• If true alignment is

reported (maximum-scoring) alignment will be

(2 mismatches cost less than 2 indels)

12

...acagaatcagggtcc-gtta...

...acagaatcagg-tcccgtta...

...acagaatcagggtccgtta...

...acagaatcaggtcccgtta...

• Similarly, if true alignment is

reported alignment will be

(size-2 indel + mismatch cost less than 2 size-1 indels)

...acagaatcagggtcccgtta...

...acagaatcagg-tcc-gtta...

...acagaatcagggtcccgtta...

...acagaatcagg--tccgtta...

• This is an issue even for highly similar

genomes!

– But worse with increasing divergence

• Ideally, report alignments with local

indications of uncertainty

– or at least, several alignments with varying

alignment penalties

but this is almost never done

• Problem is ameliorated with multiple

sequence alignments

13

14

Word Nucleation Algorithms

• Idea: find short (perfect or imperfect) word matches to
‘nucleate’ graph search

– Each such match defines short diagonal path

– Only search part of graph ‘surrounding’ this path

• BLAST: allow imperfect short (e.g. length 3) matches.

– “Neighbors”: set of 3-residue sequences having  min score T
against some 3-residue sequence of query

– Scan database seqs until hit word in neighbor list

– then do ungapped extension (along diagonal defined by word
match)

• ‘significant’ matches are those with scores  a threshold S

• Ungapped matches are effective for detecting related proteins:

– true protein alignments usually include substantial gap-free regions.

15

BLAST: Word Nucleating Alignment

A S G D R L L I C V MA T F D E I A A H N Y V I A
G
G
L
I
A
S
F
V
D
A
R
L
N
W

16

– If find  2 significant ungapped matches in same seq,

expand search to connecting region of matrix, allowing

gaps:

17

18

Other Word Nucleation Programs

• FASTA:

– look for clusters of short exact matches, on
nearby diagonals;

– when found, extend to gapped alignment

• cross_match:

– do full search of bands around exact matches

• These all still time complexity O(MN)

– because # word matches proportional to MN

but with much smaller constant.

19

• In database searches, most seqs unrelated to query.

suggests following strategy:

• use fast word-nucleation algorithm

– e.g. just looking for gap-free matches

to identify sequences ‘of interest’

– having scores above a (low) threshold

then use full Smith-Waterman on these

– can get sensitivity nearly as good as full Smith-

Waterman search.

Genome alignment
• Challenges:

– Size

– Repeated sequence

• Duplications

• Transposable elements

• Processed pseudogenes

– Other segmental changes

• Deletions

• Inversions, translocations

– Mutation rate variation

• Segmental changes don’t conform to

edit graph framework!
20

Strategy
• Find (many!) word-nucleated local alignments

• Word size w: sensitivity vs specificity

– Example: human (~3 Gb) vs mouse (~2.5 Gb)

• ~70% identity in homologous regions

• For each human word, expect 5 × 109 / 4w chance

occurrences in mouse (+ rev complement)

• Total matches: 15 × 1018 / 4w

– Want w large enough for this to be manageable

• Prob that the homologous word matches: .7w

– once every (1 / .7) w = 1.43w bp

– Want w small enough to ensure ≥ 1 match within homologous

regions

• w = 15: ~15 × 109 matches; 1 per 214 homologous bp

21

• Avoid high-frequency words

• Avoid nucleating in known repeats &

duplications

– But extend into them!

• Use appropriate score matrix & gap

penalties!

– Otherwise, get junk alignments or portions

thereof

22

• Finally, identify chains of compatible local

alignments

– Ideally, catalogue the segmental changes that

have occurred (duplications, transposable

element insertions etc)

23

