Lecture 12

• More on WDAGs:
 – Inverted WDAGs, fwd/backwd algorithm
 – Finding *multiple* high-scoring paths
• Multiple paths in edit graphs
 – Internal repeats
• Multiple paths in WLLs
• “D-segments”
Inverted WDAGs

• Can “invert” any WDAG: create graph with
 – same vertices & edge weights
 – direction of each edge reversed
 – is still acyclic!

• inverted WDAG has same paths (& path weights), but in reverse direction
 – “forward” path in inverted WDAG = “backward” path in original WDAG (& vice versa)
Forward/backward algorithm

- Order vertices \((v_1, v_2, ..., v_n)\) with parents preceding children.
 - Reverse order \((v_n, v_{n-1}, ..., v_1)\) has parents before children in \textit{inverted} graph

- (Forward direction) Find \(w(v)\)
 = highest weight of all paths ending at \(v\) in \textit{original} (non-inverted) graph

- (Backward direction) Using inverted graph, find \(w'(v)\)
 = highest weight of all paths ending at \(v\) in \textit{inverted} graph
 = highest weight of all paths \textit{beginning} at \(v\) in \textit{original} graph

- joining path ending at \(v\), to path beginning at \(v\) (in \textit{original} graph),
 see that \(w(v) + w'(v) = \text{highest weight of any path going through } v\).
Finding *multiple* high-scoring paths

- If high-weight paths are important, we’ll want more than one!
 - But *not* slight perturbations of highest-weight path

- ‘Brute force’ algorithm:
 - Find highest-weight path
 - ‘Mask it’ (remove its edges from graph)
 - Repeat above two steps until scores ‘uninteresting’
 - $< \text{some threshold value } S$
 - can be $O(N^2)$, but often acceptable
Improving on ‘brute force’ by graph reduction

- Use forwd/backwd to find $w(v), w'(v)$
- Eliminate v (& all its edges) if $w(v) + w'(v) < S$
- Eliminate all edges into v if $w(v) \leq 0$
- Eliminate all edges out of v if $w'(v) \leq 0$
- Remaining graph is often much smaller & splits into ‘connected components’ which can be processed separately
 - v, v' in same c.c. if a chain of edges connected them
- **But** no guarantee that $< O(N^2)$
• Is there an $O(N)$ algorithm?
 – Yes, for WLLs (Ruzzo & Tompa)
Finding (imperfect) internal repeats

- Search edit graph of *sequence against itself*
 - i.e. the same sequence labels columns and rows *above (\& not including) the main diagonal*:
 - if include main diagonal, best path will be identity match to self
 - complexity = $O(N^2)$ where $N =$ sequence length.

Graph for finding imperfect internal repeats:
• Find *short tandem repeats* (e.g. microsatellites, minisatellites):
 – scan a *band* just above main diagonal.
 – Complexity = $O(kN)$ where k is width of the band.
 – Manageable even for large N, if k small.

Graph for finding short tandem repeats:
Finding multiple high-scoring segments in WLLs
• A (locally-)**maximal**(-scoring) *segment* I is one such that
 – $P1$: no subsegment of I has a higher score than I
 – $P2$: no segment properly containing I satisfies $P1$

• Example:
• **Highest weight path** via dynamic programming (no explicit graph):

 in (pseudo-)pseudocode:

  ```
  cumul = max = 0;  start = 1;
  for (i = 1; i ≤ N; i++) {
    cumul += s[i];
    if (cumul ≤ 0)
      {cumul = 0;  start = i + 1;}  /* NOTE RESET TO ZERO */
    else if (cumul ≥ max)
      {max = cumul;  best_end = i;  best_start = start;}
  }
  if (max ≥ S) print best_start, best_end, max
  ```

• Correspondence to (implicit) WLL
 - i labels *edges*
 - cumul = w(v) (where v is vertex at end of edge i)
 - max = best w(v) so far
 - best_end = i corresponding to edge ending at best w(v) so far
 - start = edge following B(v)
Maximal segments – from cumulative score plot (without 0 resets)

start (local minimum) maximal segment end (local maximum)
• Can find *all* maximal segs of score \(\geq S \) using following practical (but *non-optimal*) algorithm:

\[
cumul = max = 0; \quad start = 1;
\]

\[
\text{for } (i = 1; i \leq N; i++) \{ \\
\text{cumul += } s[i];
\]

\[
\text{if } (cumul \geq max) \\
\{ max = cumul; \text{ end } = i; \}
\]

\[
\text{if } (cumul \leq 0 \text{ or } i == N) \{ \\
\text{if } (max \geq S) \\
\{ \text{print start, end, max; } \text{ i = end; } \} /* \text{N.B. MUST BACKTRACK!} */
\]

\[
\text{max = cumul = 0; start = end = i + 1;}
\]

\[
\}
\]
‘backtracked’ region – scanned twice

1st maximal segment

2d maximal segment
• In worst case this is $O(N^2)$ (because of backtracking),
 – but in practice usually $O(N)$ because a given base is usually traversed only a few times
• Ruzzo-Tompa algorithm guarantees $O(N)$
 – Basic idea:
 • keep list of potential high-scoring segments
 – modify as new local maxima/minima encountered
 • report them when confirmed (at end of a region)
• An undesirable aspect of maximal segments as defined:
 – single maximal seg may contain *two* (or more) high-scoring regions, separated by significant negative-scoring regions
 – i.e. two possibly biologically distinct target occurrences get merged into one maximal segment
• Example:

now entire segment has score = 105, & satisfies $P1$ and $P2$
A better problem!

- to avoid this, have max allowed ‘dropoff’ \(D < 0 \)

- **\(D\)-segment** is segment without any subsegments of score \(< D\)

- **maximal \(D\)-segment** is \(D\)-segment \(I \) such that
 - \(P1: \) no subsegment of \(I \) has higher score than \(I \)
 - \(P2: \) no \(D\)-segment properly containing \(I \) satisfies \(P1 \)

- Problem: given \(S (\geq -D) \), find all maximal \(D\)-segs of score \(\geq S \)
 - (algorithm fails if \(S < -D \))
Maximal D-segments

maximal segment

1st maximal D-segment

2d maximal D-segment
• $O(N)$ algorithm to find all maximal D-segs:

$$\text{cumul} = \text{max} = 0; \text{start} = 1;$$

for $(i = 1; i \leq N; i++)$

$$\text{cumul} += s[i];$$

if $(\text{cumul} \geq \text{max})$

$$\{\text{max} = \text{cumul}; \text{end} = i;\}$$

if $(\text{cumul} \leq 0 \text{ or } \text{cumul} \leq \text{max} + D \text{ or } i == N)$

$$\text{if (max} \geq S)$$

$$\{\text{print start, end, max;} \}$$

$$\text{max} = \text{cumul} = 0; \text{start} = \text{end} = i + 1; /* \text{NO BACKTRACKING NEEDED! */}$$
• So more biologically relevant problem is also computationally simpler!

• what are appropriate S and D?
 – mainly an empirical question (based on known examples); altho
 • interpretation via 2-state HMM can be useful
 • Karlin-Altschul theory tells when they are ‘statistically significant’
D-Segments

- Powerful tool for analyzing ‘linear’ data
 - Single sequences (incl. motifs, numerical data)
 - Fixed alignment

- Strengths:
 - Very simple to program
 - Very fast, even for mammalian genomes

- Main limitation:
 - Only allows two types of segments (‘target’ and ‘background’)
 - Essentially a generalization of 2-state HMMs
 - Multi-state HMMs are more flexible
CNVs & Read Depth

- **CNV** = ‘copy number variant’ – e.g. region that is single copy in reference sequence but duplicated in sample
- One way to detect: map reads from sample onto reference, look for regions of atypical coverage depth

‘*Single-copy*’ in sample and reference

```
  ___ ___ ___ ___
  ___ ___ ___ ___
  ___ ___ ___ ___
```

multi-copy in sample

```
  ___ ___ ___ ___
  ___ ___ ___ ___
  ___ ___ ___ ___
  ___ ___ ___ ___
```

HW 6: finding CNVs using D-segments

• **data**: next-gen read alignments to genome

• observed symbols: *counts* of *# read starts* at each position (0, 1, 2, ≥ 3)
 – *frequencies* from *Poisson dist’n* with appropriate mean

• target regions: *heterozygous duplications*
 – One chrom = reference allele, other is dup
 – Poisson mean = 1.5 X background mean