ecture 13

 Hidden Markov Models

— Intro & Definitions
—Examples



Hidden Markov Models

 Probability models for sequences of observed
symbols, e.g.
— nucleotide or amino acid residues
— aligned pairs of residues

— aligned set of residues corresponding to leaves of an
underlying evolutionary tree

— angles in protein chain (structure modelling)
— sounds (speech recognition)



» Assume a sequence of “hidden’ (unobserved) states
underlies each observed symbol sequence

» Each state “emits” symbols (one symbol at a time)
 States may correspond to underlying “reality” we

are trying to infer, e.qg.

— unobserved biological feature:

* (positions within) a site

— rate of evolution

— protein structural element

— speech phoneme



observed symbols

7T1—> TCZ—’ TCB—’ TCI - TCn

unobserved states



observed symbols

G C A

A

begin state unobserved states end state



Advantages of HMMs

 Flexible — gives reasonably good models in
wide variety of situations

« Computationally efficient

« Often interpretable:
— hidden states can correspond to biological features.
— can find most probable sequence of hidden states

= biological “parsing” of residue sequence.



HMMs: Formal Definition

« Alphabet 8 = {b} of observed symbols

« Set § ={k} of hidden states (usually k=0,1, 2 ....m; O Is
reserved for “begin’ state, and sometimes also an “‘end”
state)

» (Markov chain property): prob of state occurring at given

position depends only on immediately preceding state, and

IS given by

transition probabilities (a,): a,, = Prob(next state is | | curr state is k)
28 = 1, for each k.

— Usually, many transition probabilities are set to 0.

— Model topology is the # of states, and allowed (i.e. a,, # 0)
transitions.

Sometimes omit begin state, in which case need initiation
probabilities (p,) for sequence starting in a given state



from lecture 3:

 Conditional probabilities (as on the previous
slide) can be used to define a first-order
Markov model (or Markov chain model)
for sequence probabilities:

P(S; S 53+ Sp)
=P(sy) P(s2 | 51) P(S31S2) + P(Sy[Sy.1)



observed symbols

A A T
e.(A) e, (G) e, (C e, (A) e, (T)
Omq 7mg T omg, Angmy T Tj+1
0 =Ty~ Ty Tg = =0

unobserved states



 Prob that symbol occurs at given sequence
position depends only on hidden state at that
position, and Is given by

emission probabilities:

e (b) = Prob(observed symbol is b | curr state is k)
(begin and end states do not emit symbols)

 Note that

— there are no direct dependencies between observed
symbols in the sequence, however

— there are indirect dependencies implied by state
dependencies
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Where do the parameters come from?

Can either
— define parameter values a priori, or

— estimate them from training data (observed sequences
of the type to be modelled).

Usually one does a mixture of both —

— model topology is defined (some transitions set to 0),
but

— remaining parameters estimated
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Hidden Markov Model

observed symbols

A G C A T
e, (A) |€,(G) €,(C e € (A) o B (T)
By 8nyny myng 8rgry T Tj+1

unobserved states
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HMM examples: 1-state HMMSs

* single state, emitting residues with specified fregs:
= ‘background’ model
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HMM examples: site models

» “states” correspond to positions (columns in the
tables). state 1 transitions only to state 1+1:

— ;4= 1 forall;
— all other a;; are 0

 emission probabilities are position-specific
frequencies: values In frequency table columns
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Topology for Site HMM:

‘allowed’ transitions

0—1—2—3

f—5—6—/—8—9—10—11—12—
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HMM for C. elegans 3’ Splice Sites

3’ss

A

v

Intron| Exon

A 32760 3516 2313 4o o7 157 240 8192 0 3359 2401 2514
C 970 048 664 230 129 1109 6830 0 0 1277 1533 1847
G 593 575 5lo 144 39 595 12 0 8192 2539 1301 1567
T 3353 3453 4699 7336 7957 5731 1110 0 0 1017 2957 2264

CONSENSUS W W W T T t C A G r W W
o | A 0.400 0.429 0.282 0.058 0.008 0.092 0.029 1.000 0.000 0.410 0.293 0.307
SE C 0.118 0.079 0.081 0.029 0.016 0.135 0.834 0.000 0.000 0.156 0.187 0.225
g§ } G 0.072 0.070 0.063 0.018 0.005 0.073 0.001 0.000 1.000 0.310 0.159 0.191
£ S || T0.409 0.422 0.574 0.896 0.971 0.700 0.135 0.000 0.000 0.124 0.361 0.276

v
v

0—1— 2—3—4—5— 6—7

‘hidden’ states

oo

*—10—11—12
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Expanded site models

— Can expand site models to allow omission of nuc at some
positions by including other (downstream) transitions (or
via “silent states”)

— Can allow insertions by including additional states.
— transition probabilities then no longer necessarily 1 or 0
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Insertions & Deletions In Site Model

Insertion state

o
/N
= e e S e S Say

other transitions correspond
to deletions

18



HMM examples (in Durbin et al.)

» protein families (like site models — but important to

allow insertions & deletions)
« Pair HMMs

* protein structure (symbols emitted are structural
elements)
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HMM examples: 2-state HMMSs

« If a,;; and a,, are small (close to 0), and
a,, and a,, are large (close to 1),

then get (nearly) periodic model with period 2; e.g.

— dinucleotide repeat in DNA, or

— (some) beta strands in proteins.

e If a,, and a,, large, and

a,, and a,, small,

then get models of alternating regions of different

compositions (specified by emission probabilities), e.qg.

— higher vs. lower G+C content regions (RNA genes in thermophilic
bacteria); or

— hydrophobic vs. hydrophilic regions of proteins (e.g.
transmembrane domains).
Closely related to D-segment method (lecture 12)!
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A A T G C C T G G A T A

EN\VZrz=as

G+C-rich state

A+T-rich state
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HMM examples: Markov models

« Ordinary Markov chain model:
— states = observed symbols
— emission probs =1 or 0

— transition probs = prob of observing a symbol, given the
preceding one.

e Order k Markov model

— states = length k words (e.g. b;b, ... by)
— (unique) symbol emitted by b,b, ... b, Is b,
— transition prob from b,b, ... b, to c,c, ... ¢, IS non-zero
only if
* C,Cy... C,y =Db,b;5... b, InWhich case it is
P(b,.,|b,b, ... b) where b,,,=c,
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from lecture 3:

 Similarly, one can define an a order-k
Markov model in which the probability of s,
IS conditional on s;, = S; ,Si 4
(1.e. the k preceding residues)

 Note that the required number of parameters
IS exponential in k

* The independence model (which is usually
good enough for us!) = the order-0 Markov
model
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