
Lecture 13

• Hidden Markov Models

– Intro & Definitions

– Examples
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Hidden Markov Models

• Probability models for sequences of observed

symbols, e.g. 

– nucleotide or amino acid residues

– aligned pairs of residues

– aligned set of residues corresponding to leaves of an 

underlying evolutionary tree

– angles in protein chain (structure modelling)

– sounds (speech recognition) 



3

• Assume a sequence of “hidden” (unobserved) states
underlies each observed symbol sequence 

• Each state “emits” symbols (one symbol at a time)

• States may correspond to underlying “reality” we 
are trying to infer, e.g. 

– unobserved biological feature:

• (positions within) a site

– rate of evolution

– protein structural element

– speech phoneme
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Advantages of HMMs 

• Flexible – gives reasonably good models in 

wide variety of situations 

• Computationally efficient

• Often interpretable: 

– hidden states can correspond to biological features. 

– can find most probable sequence of hidden states

= biological “parsing” of residue sequence.
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HMMs: Formal Definition
• Alphabet B = {b} of observed symbols

• Set S = {k} of hidden states (usually k = 0,1, 2 ...,m; 0 is 
reserved for “begin” state, and sometimes also an “end” 
state)

• (Markov chain property): prob of state occurring at given 
position depends only on immediately preceding state, and 
is given by

transition probabilities (akl): akl = Prob(next state is l | curr state is k)

lakl = 1, for each k.

– Usually, many transition probabilities are set to 0. 

– Model topology is the # of states, and allowed (i.e. akl  0) 

transitions. 

Sometimes omit begin state, in which case need initiation 
probabilities (pk) for sequence starting in a given state



from lecture 3:

• Conditional probabilities (as on the previous 

slide) can be used to define a first-order 

Markov model (or Markov chain model) 

for sequence probabilities:

P(s1 s2 s3
… sn)

≡ P(s1) P(s2 | s1) P(s3 | s2)  
… P(sn | sn -1) 
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• Prob that symbol occurs at given sequence 
position depends only on hidden state at that 
position, and is given by 

emission probabilities: 

ek(b) = Prob(observed symbol is b | curr state is k)

(begin and end states do not emit symbols)

• Note that 

– there are no direct dependencies between observed 
symbols in the sequence, however

– there are indirect dependencies implied by state 
dependencies
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• Can either

– define parameter values a priori, or 

– estimate them from training data (observed sequences 

of the type to be modelled).

• Usually one does a mixture of both –

– model topology is defined (some transitions set to 0), 

but

– remaining parameters estimated

Where do the parameters come from?
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HMM examples: 1-state HMMs

• single state, emitting residues with specified freqs:

= ‘background’ model
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HMM examples: site models

• “states” correspond to positions (columns in the 

tables). state i transitions only to state i+1: 

– ai,i+1= 1 for all i; 

– all other aij are 0

• emission probabilities are position-specific 

frequencies: values in frequency table columns
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Topology for Site HMM: 

‘allowed’ transitions

1 2 3 4 5 6 7 8 9 10 11 120
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HMM for C. elegans 3’ Splice Sites  

 

A  3276  3516  2313   476    67   757   240  8192     0  3359  2401  2514  

C   970   648   664   236   129  1109  6830     0     0  1277  1533  1847  

G   593   575   516   144    39   595    12     0  8192  2539  1301  1567  

T  3353  3453  4699  7336  7957  5731  1110     0     0  1017  2957  2264  

 

 

A 0.400 0.429 0.282 0.058 0.008 0.092 0.029 1.000 0.000 0.410 0.293 0.307  

C 0.118 0.079 0.081 0.029 0.016 0.135 0.834 0.000 0.000 0.156 0.187 0.225  

G 0.072 0.070 0.063 0.018 0.005 0.073 0.001 0.000 1.000 0.310 0.159 0.191  

T 0.409 0.422 0.574 0.896 0.971 0.700 0.135 0.000 0.000 0.124 0.361 0.276  
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Expanded site models

– Can expand site models to allow omission of nuc at some 

positions by including other (downstream) transitions (or 

via “silent states”)

– Can allow insertions by including additional states.

– transition probabilities then no longer necessarily 1 or 0
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Insertions & Deletions in Site Model

insertion state

other transitions correspond 

to deletions
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HMM examples (in Durbin et al.)

• protein families (like site models – but important to 

allow insertions & deletions) 

• Pair HMMs

• protein structure (symbols emitted are structural 

elements)
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HMM examples: 2-state HMMs

• if a11 and a22 are small (close to 0), and 

a12 and a21 are large (close to 1), 

then get (nearly) periodic model with period 2; e.g. 
– dinucleotide repeat in DNA, or 

– (some) beta strands in proteins. 

• if  a11 and a22 large, and 

a12 and a21 small, 

then get models of alternating regions of different 
compositions (specified by emission probabilities), e.g.
– higher vs. lower G+C content regions (RNA genes in thermophilic 

bacteria); or 

– hydrophobic vs. hydrophilic regions of proteins (e.g. 
transmembrane domains).

Closely related to D-segment method (lecture 12)!
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HMM examples: Markov models

• Ordinary Markov chain model: 

– states = observed symbols

– emission probs = 1 or 0

– transition probs = prob of observing a symbol, given the 
preceding one.

• Order k Markov model

– states = length k words (e.g.  b1b2 ... bk)

– (unique) symbol emitted by b1b2 ... bk is bk

– transition prob from  b1b2 ... bk to c1c2 ... ck is non-zero 
only if 

• c1c2 ... ck-1 = b2b3 ... bk , in which case it is 

P(bk+1|b1b2 ... bk) where bk+1 = ck



• Similarly, one can define an a order-k 

Markov model in which the probability of si

is conditional on  si-k
… si-2 si-1

(i.e. the k preceding residues)

• Note that the required number of parameters 

is exponential in k

• The independence model (which is usually 

good enough for us!) = the order-0 Markov 

model
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from lecture 3:


