Lecture 16

• Evolutionary trees

• Tree-based probabilities for aligned sequences
Evolutionary trees

• Binary tree with
 – n_{leaf} leaf nodes (observed individuals)
 – n_{anc} ancestral nodes (unobserved)
• Each ancestral node has two descendants (‘left’ and ‘right’); leaves have none
• # edges:
 • # edge starts = 2 n_{anc}
 • # edge ends = $n_{\text{leaf}} + n_{\text{anc}} - 1$ (every node except root)
 • $2 n_{\text{anc}} = n_{\text{leaf}} + n_{\text{anc}} - 1$
 • $n_{\text{anc}} = n_{\text{leaf}} - 1$, # edges = 2 $n_{\text{leaf}} - 2$
ancestral nodes

root node

leaf nodes
• Want to compute *probabilities* of observed leaf sequences, given tree
 – Allows discriminating between possible trees

• Requires
 – considering possible sequences at ancestral nodes
 • # grows exponentially in both n_{anc} and sequence length !!
 – a probability model for change along edges
Mutational model for tree

• Will assume independent evolution at each sequence position
 – Doesn’t allow for context effects (e.g. CpG hotspots!)
• Mutations along an edge e:
 \[P_e(s \mid r) = \text{prob a residue } r \text{ at beginning of } e \text{ is } s \text{ at end} \]
• ‘Background’ residue freqs at the root:
 \[P_{\text{root}}(r) \]
• **Simplifying assumptions:**

 – (for DNA) \(P_e(s^\wedge \mid r^\wedge) = P_e(s \mid r) \)

 • \(^\wedge = \) complementary nuc

 • so each \(P_e \) has 6 independent params

 – A *single, reversible, infinitesimal* (~per small time unit) mutation model \(P_{inf} \) applies across entire tree

 • \(P_e = (P_{inf})^t \) where \(t = \) time along \(e \)

 • Reversibility implies root can’t be uniquely placed

 • This is model assumed by Siepel *et al.*
Probability calculations on tree

• Given:
 1. a set of observed residues at the leaves (a gap-free alignment column of the sequences)
 2. \(\{ P_e(s \mid r) \} \) and \(\{ P_{\text{root}}(s) \} \)

compute prob of observed residues

• Still exponentially many (in \(n_{\text{anc}} \)) possibilities for ancestral residues!

• But can use dynamic programming on a WDAG...
Evolut tree → WDAG

- Each *ancestral node* in tree becomes 4 nodes in WDAG
 - labelled with the 4 nucs
- *leaf nodes* remain unchanged
 - labelled with observed nuc
- Two nodes in WDAG are connected by an *edge*
 - if corresponding tree nodes are (but reverse direction)
 - weight = $P_e(s \mid r)$ where $e = \text{tree edge}$, $r, s = \text{node labels}$
- ‘urnode’
 - unlabelled
 - 4 edges coming from the 4 root nodes
 - weights = $P_{\text{root}}(s)$
urnode

$$P_{\text{root}}(s)$$

$$P_g(s \mid r)$$

$$P_h(G \mid r)$$

$$P_e(A \mid r)$$

$$P_f(G \mid r)$$
• Size of WDAG is linear in n_{leaf}
 – # nodes: $n_{\text{leaf}} + 4 \ n_{\text{anc}} + 1$
 – # edges: $4 \ n_{\text{leaf}} + 16 \ (n_{\text{anc}} - 1) + 4$

• Edges in tree point down; in WDAG, up
 – so WDAG ‘parents’ are below
cf. WDAG for 3-state HMM length n sequence (lecture 14)

weights are emission probabilities $e_k(b_i)$ for i^{th} residue b_i

weights are transition probabilities a_{kl}

b_{i-1} position $i-1$

b_i position i

b_{i+1} position $i+1$
For each vertex v, let $f(v) = \sum_{\text{paths } p \text{ ending at } v} \text{weight}(p)$, where \text{weight}(p) = \text{product} of edge weights in p. Only consider paths starting at ‘begin’ node.

Compute $f(v)$ by dynam. prog: $f(v) = \sum_i w_i f(v_i)$, where v_i ranges over the parents of v, and $w_i = \text{weight of the edge from } v_i \text{ to } v$.

Similarly for $b(v) = \sum_{p \text{ beginning at } v} \text{weight}(p)$

The paths beginning at v are the ones ending at v in the reverse (or inverted) graph.
\[f(v)b(v) = \text{sum of the path weights of all paths through } v. \]

\[f(v')wb(v) = \text{sum of the path weights of all paths through the edge } (v',v) \]
• Compute overall *probability* of leaf residues (nucleotides) by *dynamic programming* on WDAG:

• Let, for each node v, $f(v) =$ prob of leaf nuc *below* v (i.e. tree-descendants, or WDAG-ancestors, of v), given v’s nuc

 $f_{\text{left}}(v) =$ prob of leaf nuc *below* and to *left*

 $f_{\text{right}}(v) =$ prob of leaf nuc *below* and to *right*

 then $f(v) = f_{\text{left}}(v) f_{\text{right}}(v)$
• Compute these values node-by-node, visiting (WDAG-)parents before children:
 – starting at leaf nodes (setting \(f(v) = 1 \)), ending at urnode

\[
f_{left}(v) = \sum_{left - u} w(u, v) f(u)
\]

where

– \(u \) ranges over parent nodes to the left
– \(w(u, v) \) = weight on edge from \(u \) to \(v \)

(= mutation prob from \(v \) to \(u \))

Similarly for \(f_{right}(v) \)

\[
f(v) = f_{left}(v) f_{right}(v)
\]

– For \(v = \) urnode, view all parents as being to ‘left’ and \(f(v) = f_{left}(v) \)

• \(f(urnode) = \) probability of the observed leaf nucs
• a ‘forward-backward’ calc gives posterior prob of having
 – a particular nuc at an ancestral node, or
 – a particular mutational change along an edge
• can use these as *fractional counts* to estimate P’s (EM algorithm)
Probability models & alignments

• Getting the probability model P_e requires a multiple alignment

• But optimal (LLR) scoring for alignment uses P_e:
 \[
 \log\left(\frac{\text{prob of col} \mid P_e \text{ model}}{\text{prob of col} \mid \text{background}}\right)
 \]

• Find P_e, alignment jointly & iteratively (Sankoff):
 – crude alignment $\rightarrow P_e \rightarrow$ scores \rightarrow better alignment etc