Lecture 2

- Algorithms \& computation time
- Finding exact sequence matches using suffix arrays
- Hashtables

Algorithms - Some General Remarks

- The most widely used algorithms are the oldest
- e.g. sorting lists, traversing trees, dynamic programming.

The challenge in CMB is usually not finding new algorithms, but rather

- finding biologically appropriate applications of old ones.
- Often prefer
- suboptimal but easy-to-program algorithm over more optimal one
- or space-efficient algorithm over time-efficient one.
- Probabilities are important in
- interpreting results
- guiding search

The most powerful analyses generally involve probabilistic models, rather than deterministic ones.

Genomes are big,

but computers are fast!

- Typical laptop clock speed: $\sim 1 \mathrm{Ghz}$
- potentially billions of CPU instructions / sec
- a gigabase $\left(N=10^{9}\right)$ genome can be analyzed even with 1000 s of operations per base
-1000×10^{9} cycles $<20 \mathrm{~min}$

But not that fast!

- $O\left(N^{2}\right)$ analysis of a gigabase genome is impractical (unless the constant factor is much less than 1):
- 10^{18} cycles $\approx 10^{9}$ seconds ≈ 32 yrs

Important practical considerations with genome-scale data sets

- Compared to CPU operations,
- 'cache misses' (non-cache memory accesses) are very slow (100s of cycles)
- disk accesses are even slower (1000s of cycles)
- But both acquire multiple bytes at once; so accessing data sequentially (in chunks) is better than non-sequentially
- Burrows-Wheeler is slow!
- Using an interpreted language may multiply your cycles by a factor of 10 or more

Finding perfectly matching subsequences of a sequence

- Idea (much more efficient than 'brute force' approach):
- suffix array (Manber \& Myers, 1990)
- make list of positions in sequence
- each position 'points to' a suffix
$=$ subsequence starting at that position $\&$ extending to end of sequence
- lexicographically sort list of pointers
- process the list: adjacent entries are "maximally agreeing"

Suffix array step 1: List of Pointers to Suffixes

ACCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC

p_{1}	ACCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
p_{2}	CCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
p_{3}	CTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
p_{4}	TGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
p_{5}	GCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
p_{6}	CACTAAACCGTACACTGGGTTCAAGAGATTTCCC
p_{7}	ACTAAACCGTACACTGGGTTCAAGAGATTTCCC
p_{8}	CTAAACCGTACACTGGGTTCAAGAGATTTCCC
p_{9}	TAAACCGTACACTGGGTTCAAGAGATTTCCC
p_{10}	AAACCGTACACTGGGTTCAAGAGATTTCCC
p_{11}	AACCGTACACTGGGTTCAAGAGATTTCCC
p_{12}	ACCGTACACTGGGTTCAAGAGATTTCCC

- The 'pointers' are just positions (represented by integers) - not (necessarily) memory addresses
- Do not store the substrings!
- and make sure your program doesn't (unintentionally) do this!

Suffix array step 2: View as Strings to be Compared

 ACCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC$\mathrm{p}_{1} \quad$ ACCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
$\mathrm{p}_{2} \quad$ CCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
p_{3}
p_{4} CTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
p_{4} TGCACTAAACCGTACACTGGGTTCAAGAGATITCCC
p_{5} GCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
$\mathrm{p}_{6} \quad$ CACTAAACCGTACACTGGGTTCAAGAGATTTCCC
p_{7}
p_{8} ACTAAACCGTACACTGGGTTCAAGAGATTTCCC
p_{8} CTAAACCGTACACTGGGTICAAGAGATITCCC
$\mathrm{p}_{9} \quad$ TAAACCGTACACTGGGTTCAAGAGATTTCCC
p_{10} AAACCGTACACTGGGTTCAAGAGATTTCCC
p_{11} AACCGTACACTGGGTTCAAGAGATTTCCC
p_{12} ACCGTACACTGGGTTCAAGAGATTTCCC

Suffix array step 3:

Sort the Pointers Lexicographically

ACCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC

p_{10}	AAACCGTACACTGGGTTCAAGAGATTTCCC
p_{11}	AACCGTACACTGGGTTCAAGAGATTTCCC
p_{28}	AAGAGATTTCCC
p_{17}	ACACTGGGTTCAAGAGATTTCCC
p_{12}	ACCGTACACTGGGTTCAAGAGATTTCCC
p_{1}	ACCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
p_{7}	ACTAAACCGTACACTGGGTTCAAGAGATTTCCC
p_{19}	ACTGGGTTCAAGAGATTTCCC
p_{29}	AGAGATTTCCC
p_{31}	AGATTTCCC
p_{33}	ATTTCCC
p_{27}	CAAGAGATTTCCC
	\vdots

Finding Matching Subsequences Using the Sorted List of Pointers

- Perfectly matching subsequences
- (more precisely - the pointers to the starts of those subsequences)
are "near" each other in the sorted list
- For a given subsequence, a longest perfect match to it is adjacent to it in the sorted list
- (there may be other, equally long matches which are not adjacent, but they are nearby).
- Can use to find matches among multiple sequences by concatenating them (+ reverse complements)
- e.g. sequence assembly of a large \# of reads
- HW \#1 asks you to apply this algorithm to find:
- perfectly matching subsequences in 2 genomic sequences \& their reverse complements.
- much faster than an $O\left(N^{2}\right)$ algorithm (e.g. SmithWaterman, or even BLAST), but
- limited to finding exact matches

Algorithmic Complexity

- Basic questions about an algorithm:
- how long does it take to run?
- how much space (RAM or disk space) does it require?
- Would like precise function $f(N)$, e.g.

$$
f(N)=.05 N^{3}+50.7 N^{2}+6.03 N
$$

for

- running time in secs, or
- space in kbytes,
as function of the size N of input data set.
- But
- tedious to derive, \&
- depends on hardware \& software implementation details.
- Instead, more customary to give "the" asymptotic complexity, i.e. expression $g(N)$ such that

$$
C_{1} g(N)<f(N)<C_{2} g(N)
$$

for some constants C_{1} and C_{2}, and N large enough.

- This is written $O(g(N))$, where notation $O()$ means "up to an unspecified multiplicative constant".
- e.g. for the $f(N)$ above, the dominating term for large N is $.05 N^{3}$, so
- can take $g(N)=N^{3}$
- asymptotic complexity $=O\left(N^{3}\right)$.
- Useful as rough guide to performance, but can be misleading:
- for small N a different term may dominate
- e.g. $2^{\text {d }}$ term in above example more important for $N<1000$
- size of constant may be quite important
- (big difference between .05 and 5,000,000!)
- e.g. BLAST and Smith-Waterman both $O\left(N^{2}\right)$, but size of constant enormously different
- 'cache misses' and disk accesses often dominate running time, yet are invisible to complexity analysis (because affect constant factor only)
- Another limitation: time or space requirement may depend on specific characteristics of input data.
- Usually give "worst case" complexity
- applies to the worst data set of a given size,
but
- in biological situations the average biologically occurring case is
- more relevant
- often much easier than worst case (which may never arise in practice), or even "average case" in some idealized sense.

Exponents \& logarithms

- $\log _{\mathrm{a}}\left(\mathrm{a}^{\mathrm{b}}\right)=\mathrm{b}, \mathrm{a}^{\log \mathrm{a}(\mathrm{b})}=\mathrm{b}(\log$ inverts $\exp)$
- $a^{b+c}=a^{b} a^{c} \quad \log _{a}(d f)=\log _{a}(d)+\log _{a}(f)$
- $\left(a^{b}\right)^{c}=a^{b c} \quad \log _{a}\left(d^{f}\right)=f \log _{a}(d)$
- $\mathrm{a}^{0}=1 \quad \log _{\mathrm{a}}(1)=0$
- $\mathrm{a}^{1}=\mathrm{a}$
$\log _{a}(a)=1$
- $\mathrm{a}^{-\mathrm{b}}=1 / \mathrm{a}^{\mathrm{b}}$
$\log _{\mathrm{a}}(1 / \mathrm{d})=-\log _{\mathrm{a}}(\mathrm{d})$
- $\log _{c}(b)=\log _{a}(b) / \log _{a}(c)$
- $4=2^{2}$
- $4^{5}=2^{10}=1024 \approx 10^{3}$
- $4^{10}=2^{20} \approx 10^{6}$
- $4^{15}=2^{30} \approx 10^{9}$
- $4^{\mathrm{n}}=$ \# DNA 'words' of length n
- $\log _{4}\left(10^{9}\right) \approx 15$

(Average Case) Complexity Analysis of Suffix Array algorithm

- If $N=$ sequence length, sorting can be done with
- $O(N \log (N)$) comparisons,
- each requiring $O(\log (N)$) steps on average,
for an overall complexity of $O\left(N(\log (N))^{2}\right)$.
- (Processing the sorted list requires an additional $O(N \log (N))$ steps - doesn't affect the overall complexity).
- N.B. cache misses are a significant factor!
- Manber \& Myers (1990) have more efficient algorithm $(O(N \log (N)))$
- several $O(N)$ algorithms are now known - but the best implementations are not as fast as $O(N \log (N))$ algorithms, even for very large genomes!!
- \exists other, older $O(N)$ methods ('suffix trees'), but these are
- much less space efficient,
- harder to program, and
- (probably) slower in practice

Hashtables

- Like suffix arrays, they store locations of subsequences in a way that allows quick finding of matches
- But using subsequences (or words) of a fixed length w
- Idea: work thru the sequence a base at a time.
- for the word starting at position p :
- Convert the word into a table location
- If that location is already occupied, find a nearby unoccupied one
- Store p, and (if necessary) enough additional information to reconstruct the word

Nucleotides to numbers

- Let (for example)

$$
\mathrm{A}=0, \mathrm{C}=1, \mathrm{G}=2, \mathrm{~T}(\text { or } \mathrm{U})=3
$$

- Then any (short) sequence has corresponding \#, e.g:

AGGC $=0 \times 4^{\wedge} 3+2 \times 4 \wedge 2+2 \times 4 \wedge 1+1=0+32+8+1=41$

- allows more efficient sequence storage
- 1 byte per 4 nucs
- Can be important for some tasks (e.g. assembly of large \# reads)
- Can be used for table locations for short word lengths
- Not ideal: many 'collisions’

Hashtables vs suffix arrays

- Advantages of hashtables:
- only $O(N)$ to construct table, $O(1)$ to lookup an entry
- Disadvantages:
- less memory efficient
- requires choice of a fixed word length w
- (slightly) harder to program

