Lecture 2

- Algorithms & computation time
- Finding exact sequence matches using suffix arrays
- Hashtables
The most widely used algorithms are the oldest
 – e.g. sorting lists, traversing trees, dynamic programming.
The challenge in CMB is usually *not* finding *new* algorithms,
but rather
 – finding *biologically appropriate applications* of old ones.

Often prefer
 – suboptimal but *easy-to-program* algorithm over more optimal one
 – or space-efficient algorithm over time-efficient one.

Probabilities are important in
 – interpreting results
 – guiding search
The most powerful analyses generally involve probabilistic models, rather than deterministic ones.
Genomes are big, but computers are fast!

- Typical laptop clock speed: ~ 1 Ghz
 - potentially billions of CPU instructions / sec
- a gigabase \((N = 10^9)\) genome can be analyzed even with 1000s of operations per base
 - \(1000 \times 10^9\) cycles < 20 min
But not *that* fast!

- $O(N^2)$ analysis of a gigabase genome is impractical (*unless* the constant factor is *much* less than 1):
 - 10^{18} cycles $\approx 10^9$ seconds ≈ 32 yrs
Important practical considerations with genome-scale data sets

• Compared to CPU operations,
 – ‘cache misses’ (non-cache memory accesses) are very slow (100s of cycles)
 – disk accesses are even slower (1000s of cycles)
• But both acquire multiple bytes at once; so accessing data sequentially (in chunks) is better than non-sequentially
 – Burrows-Wheeler is slow!
• Using an interpreted language may multiply your cycles by a factor of 10 or more
Finding perfectly matching subsequences of a sequence

• Idea (*much* more efficient than ‘brute force’ approach):
 – *suffix array* (Manber & Myers, 1990)
 – make list of positions in sequence
 – each position ‘points to’ a *suffix*
 = subsequence starting at that position & extending to end of sequence
 – lexicographically sort list of pointers
 – process the list: adjacent entries are “maximally agreeing”
Suffix array step 1:
List of Pointers to Suffixes

ACCTGCACTAAACCGTACACTGGGTTCAGAGATTTCCC

p_1 ACCTGCACTAAACCGTACACTGGGTTCAGAGATTTCCC
p_2 CCTGCACTAAACCGTACACTGGGTTCAGAGATTTCCC
p_3 CTGCACTAAACCGTACACTGGGTTCAGAGATTTCCC
p_4 TGCACTAAACCGTACACTGGGTTCAGAGATTTCCC
p_5 GCACTAAACCGTACACTGGGTTCAGAGATTTCCC
p_6 CACTAAACCGTACACTGGGTTCAGAGATTTCCC
p_7 ACTAAACCGTACACTGGGTTCAGAGATTTCCC
p_8 CTAAACCGTACACTGGGTTCAGAGATTTCCC
p_9 TAAACCGTACACTGGGTTCAGAGATTTCCC
p_{10} AAACCGTACACTGGGTTCAGAGATTTCCC
p_{11} AACCGTACACTGGGTTCAGAGATTTCCC
p_{12} ACCGTACACTGGGTTCAGAGATTTCCC

::
• The ‘pointers’ are just positions (represented by integers) – *not* (necessarily) memory addresses

• *Do not* store the substrings!
 – and make sure your program doesn’t (unintentionally) do this!
Suffix array step 2:
View as Strings to be Compared

ACCTGCACTAAACCCGTACACTGGGTTCAAGAGAGATTTCCC

p_1 ACCTGCACTAAACCCGTACACTGGGTTCAAGAGAGATTTCCC
p_2 CCTGCACTAAACCCGTACACTGGGTTCAAGAGAGATTTCCC
p_3 CTGCACTAAACCCGTACACTGGGTTCAAGAGAGATTTCCC
p_4 TGCACTAAACCGTACACTGGGTTCAAGAGAGATTTCCC
p_5 GCACTAAACCCGTACACTGGGTTCAAGAGAGATTTCCC
p_6 CACTAAACCCGTACACTGGGTTCAAGAGAGATTTCCC
p_7 ACTAAACCCGTACACTGGGTTCAAGAGAGATTTCCC
p_8 CTAAACCCGTACACTGGGTTCAAGAGAGATTTCCC
p_9 TAAACCCGTACACTGGGTTCAAGAGAGATTTCCC
p_{10} AAACCCGTACACTGGGTTCAAGAGAGATTTCCC
p_{11} AACCCGTACACTGGGTTCAAGAGAGATTTCCC
p_{12} ACCGTACACTGGGTTCAAGAGAGATTTCCC

:

:

Suffix array step 3: Sort the Pointers Lexicographically

ACCTGCACTAAACCGTACACTGGGTTCAAGAGAGATTTCCC

\begin{align*}
\text{p}_{10} & \rightarrow \text{AAACCGTACA}C\text{ACTGGGTT}CAAGAGAGATTTCCC \\
\text{p}_{11} & \rightarrow \text{AAACCGTAC}ACTGGGTTCAAGAGAGATTTCCC \\
\text{p}_{28} & \rightarrow \text{AAGAGAGATTTCCC} \\
\text{p}_{17} & \rightarrow \text{ACACTGGGTT}CAAGAGAGATTTCCC \\
\text{p}_{12} & \rightarrow \text{ACCGTACA}C\text{ACTGGGTT}CAAGAGAGATTTCCC \\
\text{p}_{1} & \rightarrow \text{ACCTGCACTAAACCGTACA}C\text{ACTGGGTT}CAAGAGAGATTTCCC \\
\text{p}_{7} & \rightarrow \text{ACTAAACCGTAC}ACTGGGTTCAAGAGAGATTTCCC \\
\text{p}_{19} & \rightarrow \text{ACTGGGTTCAAGAGAGATTTCCC} \\
\text{p}_{29} & \rightarrow \text{AGAGAGATTTCCC} \\
\text{p}_{31} & \rightarrow \text{AGATT}TCCC \\
\text{p}_{33} & \rightarrow \text{ATTTCCC} \\
\text{p}_{27} & \rightarrow \text{CAAGAGAGATTTCCC} \\
\end{align*}
Finding Matching Subsequences Using the Sorted List of Pointers

• Perfectly matching subsequences
 – (more precisely – the pointers to the starts of those subsequences)
 are “near” each other in the sorted list

• For a given subsequence, a longest perfect match to it is adjacent to it in the sorted list
 – (there may be other, equally long matches which are not adjacent, but they are nearby).
• Can use to find matches *among multiple sequences* by concatenating them (+ reverse complements)
 – e.g. *sequence assembly* of a large # of reads
• HW #1 asks you to apply this algorithm to find:
 – perfectly matching subsequences in 2 genomic sequences & their reverse complements.
• much faster than an $O(N^2)$ algorithm (e.g. Smith-Waterman, or even BLAST), *but*
• limited to finding *exact* matches
Algorithmic Complexity

• Basic questions about an algorithm:
 – how long does it take to run?
 – how much space (RAM or disk space) does it require?

• Would like precise function $f(N)$, e.g.
 \[f(N) = 0.05 N^3 + 50.7 N^2 + 6.03 N \]
 for
 – running time in secs, or
 – space in kbytes,

as function of the size N of input data set.

• But
 – tedious to derive, &
 – depends on hardware & software implementation details.
• Instead, more customary to give “the” asymptotic complexity, i.e. expression $g(N)$ such that

$$C_1 g(N) < f(N) < C_2 g(N)$$

for some constants C_1 and C_2, and N large enough.

• This is written $O(g(N))$, where notation $O()$ means “up to an unspecified multiplicative constant”.

 – e.g. for the $f(N)$ above, the dominating term for large N is $.05 N^3$, so

• can take $g(N) = N^3$

• asymptotic complexity = $O(N^3)$.
• Useful as rough guide to performance, *but* can be misleading:
 – for small N a different term may dominate
 • e.g. 2^d term in above example more important for $N < 1000$
 – size of constant may be quite important
 • (big difference between .05 and 5,000,000!)
 • e.g. BLAST and Smith-Waterman both $O(N^2)$, but size of constant enormously different
 • ‘cache misses’ and disk accesses often dominate running time, yet are invisible to complexity analysis (because affect constant factor only)
• Another limitation: time or space requirement may depend on specific characteristics of input data.
• Usually give “worst case” complexity
 – applies to the worst data set of a given size,

but
 – in biological situations the *average biologically occurring case* is
 • more relevant
 • often much easier than worst case (which may never arise in practice), or even “average case” in some idealized sense.
Exponents & logarithms

- $\log_a(a^b) = b, \quad a^{\log_a(b)} = b$ (log inverts exp)
- $a^{b+c} = a^b a^c \quad \log_a(df) = \log_a(d) + \log_a(f)$
- $(a^b)^c = a^{bc} \quad \log_a(d^f) = f \log_a(d)$
- $a^0 = 1 \quad \log_a(1) = 0$
- $a^1 = a \quad \log_a(a) = 1$
- $a^{-b} = 1 / a^b \quad \log_a(1 / d) = -\log_a(d)$
- $\log_c(b) = \log_a(b) / \log_a(c)$
• $4 = 2^2$
• $4^5 = 2^{10} = 1024 \approx 10^3$
• $4^{10} = 2^{20} \approx 10^6$
• $4^{15} = 2^{30} \approx 10^9$
• $4^n = \# \text{ DNA ‘words’ of length n}$
• $\log_4(10^9) \approx 15$
(Average Case) Complexity Analysis of Suffix Array algorithm

• If $N =$ sequence length, sorting can be done with
 – $O(N \log(N))$ comparisons,
 – each requiring $O(\log(N))$ steps on average,
for an overall complexity of $O(N(\log(N))^2)$.
 – (Processing the sorted list requires an additional $O(N \log(N))$ steps – doesn’t affect the overall complexity).
 – N.B. cache misses are a significant factor!

• Manber & Myers (1990) have more efficient algorithm ($O(N \log(N))$)

• several $O(N)$ algorithms are now known – but the best implementations are not as fast as $O(N \log(N))$ algorithms, even for very large genomes!!

• ∃ other, older $O(N)$ methods (‘suffix trees’), but these are
 – much less space efficient,
 – harder to program, and
 – (probably) slower in practice
Hashtables

- Like suffix arrays, they store locations of subsequences in a way that allows quick finding of matches.
- But using subsequences (or words) of a fixed length w.
- Idea: work thru the sequence a base at a time.
 - for the word starting at position p:
 - Convert the word into a table location.
 - If that location is already occupied, find a nearby unoccupied one.
 - Store p, and (if necessary) enough additional information to reconstruct the word.
Nucleotides to numbers

- Let (for example)
 \[A = 0, \ C = 1, \ G = 2, \ T \text{ (or } U) = 3 \]
- Then any (short) sequence has corresponding #, e.g:
 \[AGGC = 0 \times 4^3 + 2 \times 4^2 + 2 \times 4^1 + 1 = 0 + 32 + 8 + 1 = 41 \]
- allows more efficient sequence storage
 - 1 byte per 4 nucs
 - Can be important for some tasks (e.g. assembly of large # reads)
- Can be used for table locations for short word lengths
 - Not ideal: many ‘collisions’
Hashtables vs suffix arrays

• Advantages of hashtables:
 – only $O(N)$ to construct table, $O(1)$ to lookup an entry

• Disadvantages:
 – less memory efficient
 – requires choice of a fixed word length w
 – (slightly) harder to program