# Lecture 3: Probability Models for Sequences

• Probability models

- Equal frequency & independence assumptions

- 'Background' models
  - Failure of equal frequency assumption
    - Neutralist vs selectionist interpretations
  - Failure of independence assumption
    - Markov models
- Assessing significance of sequence patterns

   Simulations

# Probability Models of Sequences

- Sample questions when interpreting genomes:
  - Is this sequence a splice site?
  - Is this sequence part of the coding region of a gene?
  - Are these two sequences evolutionarily related?
  - Does this sequence show evidence of selection?
- Computational analysis can't answer:
  - only generates *hypotheses* which must ultimately be tested by experiment.
- *But* hypotheses should
  - have some reasonable chance of being correct, and
  - carry indication of reliability.

- We use *probability models* of sequences to address such questions.
- Not the only approach, but usually the most powerful, because
  - seqs are products of evolutionary process which is *itself* probabilistic
  - want to detect biological "signal" against "noise" of background sequence or mutations

# Models: simplicity vs complexity

- *"All models are wrong; some models are useful."* – George Box
- "What is simple is always wrong. What is not is unusable." Paul Valery
- "Everything should be made as simple as possible, but not simpler." Albert Einstein (?)
- Some disadvantages of complexity:
  - computational challenge
  - (lack of) interpretability
  - overfitting

### **Basic Probability Theory Concepts**

- A *sample space S* is set of all possible outcomes of a conceptual, repeatable experiment.
  - $-/S/<\infty$  in most of our examples.
  - e.g. S = all possible sequences of a given length.
- Elements of *S* are called *sample points*.
  - e.g. a particular seq = outcome of "experiment" of extracting seq of specified type from a genome.
- A *probability distribution P* on *S* assigns non-neg real number P(s) to each  $s \in S$ , such that

$$\sum_{s \in S} P(s) = 1$$

 $(\text{So } 0 \le P(s) \le 1 \quad \forall s )$ 

- Intuitively, P(s) = fraction of times one would get *s* as result of the expt, if repeated many times.

- A *probability space* (*S*,*P*) is a sample space *S* with a prob dist'n *P* on *S*.
- Prob dist'n on *S* is sometimes called a *probability model* for *S*, particularly if several dist'ns are being considered.
  - Write models as  $M_1, M_2$ , probabilities as  $P(s \mid M_1)$ ,  $P(s \mid M_2)$ .
  - e.g.
    - $M_1$  = prob dist'n for splice site seqs,
    - $M_2$  = prob dist'n for "background" (arbitrary genomic) seqs.

- An *event E* is a criterion that is true or false for each *s*∈*S*.
  - defines a subset of S (sometimes also denoted E).

-P(E) is defined to be  $\sum_{s|E \text{ is true}} P(s)$ .

• Events  $E_1, E_2, ..., E_n$  are *mutually exclusive* if no two of them are true for the same point;

- then  $P(E_1 \text{ or } E_2 \text{ or } \dots \text{ or } E_n) = \sum_{1 \le i \le n} P(E_i)$ .

• If  $E_1, E_2, ..., E_n$  are also *exhaustive*, i.e. every *s* in *S* satisfies  $E_i$  for some *i*, then  $\sum_{1 \le i \le n} P(E_i) = 1$ .

• For events *E* and *H*, the *conditional probability* of *E* given *H*, is

 $P(E \mid H) \equiv P(E \text{ and } H) / P(H)$ 

- (= prob that both *E* and *H* are true, given *H* is true) - undefined if P(H) = 0.
- *E* and *H* are (*statistically*) *independent* if P(E) = P(E | H)

(i.e. prob. *E* is true doesn't depend on whether *H* is true); or equivalently

P(E and H) = P(E)P(H).

### Probabilities on Sequences

- Let *S* = space of DNA or protein sequences of length *n*. Possible assumptions for assigning probabilities to *S*:
  - *Equal frequency assumption:* All residues are equally probable at any position;
    - $P(E_r^{(i)}) = P(E_q^{(i)})$  for any two residues *r* and *q*,

- where  $E_r^{(i)}$  means residue *r* occurs at position *i*, then

• Since for fixed *i* the  $E_r^{(i)}$  are mutually exclusive and exhaustive,

 $P(E_r^{(i)}) = 1 / |A|$ 

where A = residue alphabet

 $P(E_r^{(i)}) = 1/20$  for proteins, 1/4 for DNA).

- *Independence assumption*: whether or not a residue occurs at a given position is independent of residues at other positions.

- Given above assumptions, the probability of the sequence s = ACGCG
  - (in the space S of all length 5 sequences) is calculated by considering 5 events:
    - Event 1 is that first nuc is A.
    - Event 2 is that  $2^d$  nuc is C.
    - Event 3 is that  $3^d$  nuc is G.
    - Event 4 is that 4<sup>th</sup> nuc is C.
    - Event 5 is that 5<sup>th</sup> nuc is G.

Probability = .25.

- Probability = .25.
- Probability = .25.

Probability 
$$= .25$$
.

Probability = .25.

By independence assumption, prob of all 5 events occurring is the product  $(.25)^5 = 1/1024$ .

Since s is the only sequence satisfying all 5 conditions, P(s)= 1/1024.

• More generally, under equal freq and indep assumptions,

prob of nuc sequence of length  $n = .25^n$ , prob of protein sequence of length  $n = .05^n$ in the space *S* of length *n* sequences. 'Background' models

• 'Average' model for genome; contrasted with 'foreground' models (for sites & other regions of interest)

• Whole genome vs non-site

Genome background models: Failure of equal frequency assumption

- For most organisms, the genomic nucleotide composition is significantly different from .25 for each nucleotide, e.g.:
  - *H. influenza* .31 A, .19 C, .19 G, .31 T
  - P. aeruginosa .17 A, .33 C, .33 G, .17 T
  - M. janaschii .34 A, .16 C, .16 G, .34 T
  - S. cerevisiae .31 A, .19 C, .19 G, .31 T
  - C. elegans .32 A, .18 C, .18 G, .32 T
  - H. sapiens .29 A, .21 C, .21 G, .29 T

- Note approximate symmetry:  $A \cong T, C \cong G$ ,
  - even though we're counting nucs on just one strand.
  - Expect *exact* equality when counting both strands
- Explanation:
  - Although individual biological features may have nonsymmetric composition (local *asymmetry*),
  - usually features are distributed approx *randomly* w.r.t. strand,
  - so local asymmetries *cancel*, yielding overall symmetry.



General Hypotheses Regarding Unequal Frequency

- Neutralist hypothesis: *mutation bias* e.g. due to nucleotide pool composition
- Selectionist hypothesis: *selection* 
  - selection on (many) particular nucleotides
  - selection on mutational bias mechanisms

#### Genome background models: Failure of independence assumption

Nucleotide Freqs (*C. elegans* chr. 1): A 4575132 (.321) ; C 2559048 (.179) ; G 2555862 (.179); T 4582688 (.321)

dinucleotide frequencies (5' nuc to left, 3' nuc at top - e.g. obs freq
 of ApC is .047): (Note "symmetry"!)

| Observed |       |       |       |       | Expected (under independence) |
|----------|-------|-------|-------|-------|-------------------------------|
|          | A     | С     | G     | Т     | A C G T                       |
| Α        | 0.135 | 0.047 | 0.051 | 0.088 | 0.103 0.057 0.057 0.103       |
| С        | 0.061 | 0.035 | 0.033 | 0.051 | 0.057 0.032 0.032 0.058       |
| G        | 0.063 | 0.034 | 0.034 | 0.047 | 0.057 0.032 0.032 0.057       |
| т        | 0.061 | 0.064 | 0.061 | 0.135 | 0.103 0.058 0.057 0.103       |

|   | Obsei | rved / | Expected |       |  |
|---|-------|--------|----------|-------|--|
|   | A     | С      | G        | Т     |  |
| Α | 1.314 | 0.818  | 0.885    | 0.853 |  |
| С | 1.055 | 1.075  | 1.031    | 0.886 |  |
| G | 1.106 | 1.062  | 1.074    | 0.818 |  |
| т | 0.597 | 1.105  | 1.056    | 1.313 |  |

# Dinucleotide frequencies

- Underrepresentation of *TpA*: found in nearly all genomes;
  - reason unknown:
    - neutral (mutation patterns)?
    - selection?
- Overrepresentation of *ApA*, *TpT*, *CpC*, *GpG* also frequently observed in other organisms.
- Unlike mammalian genomes, no underrepresentation of *CpG* in *C. elegans* 
  - CpG not methylated in C. *elegans* (or most other non-vertebrates).

#### Dinucleotide Freqs – H. sapiens Chr.21

Nucleotide Freqs:

A 10032226 0.297; T 9962530 0.295 G 6908202 0.204; C 6921020 0.205 Entropy: 1.976 bits

|   | Observed Dinuc Freqs |       |       | Expected | d (una | ler in | dependence) |       |
|---|----------------------|-------|-------|----------|--------|--------|-------------|-------|
|   | A                    | С     | G     | Т        | A      | С      | G           | Т     |
| Α | 0.099                | 0.051 | 0.069 | 0.078    | 0.088  | 0.061  | 0.061       | 0.087 |
| С | 0.073                | 0.052 | 0.011 | 0.069    | 0.061  | 0.042  | 0.042       | 0.060 |
| G | 0.059                | 0.043 | 0.052 | 0.050    | 0.061  | 0.042  | 0.042       | 0.060 |
| т | 0.066                | 0.059 | 0.072 | 0.098    | 0.087  | 0.060  | 0.060       | 0.087 |

|   | Observed / Expected |       |       |       |  |  |  |  |
|---|---------------------|-------|-------|-------|--|--|--|--|
|   | A                   | С     | G     | Т     |  |  |  |  |
| A | 1.124               | 0.839 | 1.139 | 0.891 |  |  |  |  |
| С | 1.204               | 1.243 | 0.260 | 1.139 |  |  |  |  |
| G | 0.974               | 1.025 | 1.245 | 0.839 |  |  |  |  |
| Т | 0.752               | 0.976 | 1.204 | 1.125 |  |  |  |  |

#### 5-methylcytosine (<sup>m</sup>C): the '5<sup>th</sup> base'

- Comprises ~1-6% of mammalian & plant genomes
- Methylation does *not* affect base-pairing:



- But it *does* affect
  - protein binding, e.g. Sp1, EGR1, CTCF

⇒ effects on gene expression, development, cellular differentiation, transposon suppression, embryogenesis, imprinting, X-inactivation, chromatin structure, tumorigenesis

mouse methyltransferase knockouts are embryonic lethal

– mutation rate: <sup>m</sup>C is a mutation 'hotspot':



http://<u>www.ncbi.nlm.nih.gov</u>

• In mammals methylated C's (nearly) always occur as part of a CpG dinucleotide:

3′ G <sup>m</sup>C 5′

• But some Cs *not* in CpGs are methylated, in some cell types

- as many as 20-30% of all new single-base mutations in mammalian genomes may be at CpGs, judging from
  - analysis of disease-causing mutations,
  - comparison of closely related species
  - polymorphism data
- As a result, CpGs are substantially underrepresented in mammalian DNA:
  - expected frequency .21 .21 = .044 (in mammalian genomes, G+C freq is about .42, A+T about .58)
  - only see about 1/5 that many.
- Conversely, TpGs and CpAs are overrepresented

#### Dinucleotide Freqs – H. sapiens Chr.22

Nucleotide Freqs:

| A                   | 8745910 | 0.261; Т | 8720493 | 0.261 |  |  |  |
|---------------------|---------|----------|---------|-------|--|--|--|
| G                   | 7999585 | 0.239; C | 7997931 | 0.239 |  |  |  |
| Entropy: 1.999 bits |         |          |         |       |  |  |  |

|   | Observed Dinuc Freqs |       |       | Expected | (und  | ler in | dependence) |       |
|---|----------------------|-------|-------|----------|-------|--------|-------------|-------|
|   | A                    | С     | G     | Т        | A     | С      | G           | Т     |
| Α | 0.077                | 0.051 | 0.075 | 0.058    | 0.068 | 0.062  | 0.062       | 0.068 |
| С | 0.077                | 0.071 | 0.016 | 0.075    | 0.062 | 0.057  | 0.057       | 0.062 |
| G | 0.061                | 0.057 | 0.071 | 0.051    | 0.062 | 0.057  | 0.057       | 0.062 |
| т | 0.047                | 0.061 | 0.077 | 0.076    | 0.068 | 0.062  | 0.062       | 0.068 |

|   | Observed / Expected |       |       |       |  |  |  |  |
|---|---------------------|-------|-------|-------|--|--|--|--|
|   | A                   | С     | G     | Т     |  |  |  |  |
| Α | 1.125               | 0.817 | 1.205 | 0.855 |  |  |  |  |
| С | 1.233               | 1.236 | 0.285 | 1.206 |  |  |  |  |
| G | 0.975               | 0.989 | 1.237 | 0.818 |  |  |  |  |
| т | 0.684               | 0.977 | 1.233 | 1.124 |  |  |  |  |

#### Genome background models: Failure of independence assumption

Nucleotide Freqs (*C. elegans* chr. 1): A 4575132 (.321) ; C 2559048 (.179) ; G 2555862 (.179); T 4582688 (.321)

dinucleotide frequencies (5' nuc to left, 3' nuc at top - e.g. obs freq
 of ApC is .047): (Note "symmetry"!)

| Observed |       |       |       |       | Expected (under independence) |
|----------|-------|-------|-------|-------|-------------------------------|
|          | A     | С     | G     | Т     | A C G T                       |
| A        | 0.135 | 0.047 | 0.051 | 0.088 | 0.103 0.057 0.057 0.103       |
| С        | 0.061 | 0.035 | 0.033 | 0.051 | 0.057 0.032 0.032 0.058       |
| G        | 0.063 | 0.034 | 0.034 | 0.047 | 0.057 0.032 0.032 0.057       |
| т        | 0.061 | 0.064 | 0.061 | 0.135 | 0.103 0.058 0.057 0.103       |

|   | Obsei | rved / | Expected |       |  |
|---|-------|--------|----------|-------|--|
|   | A     | С      | G        | Т     |  |
| Α | 1.314 | 0.818  | 0.885    | 0.853 |  |
| С | 1.055 | 1.075  | 1.031    | 0.886 |  |
| G | 1.106 | 1.062  | 1.074    | 0.818 |  |
| Т | 0.597 | 1.105  | 1.056    | 1.313 |  |

Conditional probability (in *C. elegans*) of a given nucleotide (top) occurring, given the preceding nucleotide (left)

|   | A     | С     | G     | Т     |
|---|-------|-------|-------|-------|
| A | 0.421 | 0.147 | 0.159 | 0.274 |
| С | 0.338 | 0.193 | 0.185 | 0.284 |
| G | 0.355 | 0.190 | 0.192 | 0.263 |
| Т | 0.191 | 0.198 | 0.189 | 0.421 |

#### Markov models

 Such conditional probabilities can be used to define a *first-order Markov model* (or *Markov chain model*) for background sequence probabilities:

$$P(s_1 \ s_2 \ s_3 \cdots \ s_n) \\\equiv P(s_1) \ P(s_2 \ / \ s_1) \ P(s_3 \ / \ s_2) \ \cdots \ P(s_n \ / \ s_{n-1})$$

- Similarly, one can define an a *order-k Markov model* in which the probability of s<sub>i</sub> is conditional on s<sub>i-k</sub> … s<sub>i-2</sub> s<sub>i-1</sub>
  (i.e. the *k* preceding residues)
- Note that the required number of parameters is exponential in *k*
- independence model = order-0 Markov model

#### Assessing significance of sequence patterns

- Problem: Is a particular sequence pattern, e.g.
  - a match between genomes, or
  - a region of a particular composition (e.g. GC-rich)
  - likely to be "biologically significant", e.g. indicating
    - an evolutionary relationship, or
    - a functional feature

#### Assessing significance of sequence patterns

- Idea:
  - specify a scoring system for patterns of the given type
  - find the score *distribution* in *negative controls* 
    - i.e. sequences not expected to contain the biological feature
  - Scores occurring in real sequence, but not in negative controls, *may* have biological significance
- Caveats:
  - Control may be inadequate in quantity / quality
  - 'Biologically significant' ≠ interpretable
    - can't infer function!!

#### 'Negative control' sequences

- 1. real biological 'background' sequences known not to have the feature in question
  - ideal if available but usually hard to find!
- 2. simulated sequences
  - requires probability model retaining *some* features of real sequences
  - Quantity: In general, want multiple such sequences
  - Quality: is the model complex enough?

#### Theoretical score distributions

- For simple probability models, can sometimes avoid simulations by finding a *theoretical* probability distribution
  - approximate, e.g. Karlin-Altschul for BLAST hits
  - or exact

for the scores.

- Alternatively, can fit a theoretical distribution to the observed scores for simulated data
  - Avoids need for large number of simulations

### Homework 2

- Purpose: Assess significance of HW 1 genomic matches
- Simulate negative controls using two different background sequence models:
  - Order 0 Markov
  - Order 1 Markov
- Then find matches (using HW 1 suffix array method) between real sequence and these control sequences
  - Ideally should do lots of simulations!!