
Lecture 3:

Probability Models for Sequences

• Probability models

– Equal frequency & independence assumptions

• ‘Background’ models 

– Failure of equal frequency assumption

• Neutralist vs selectionist interpretations

– Failure of independence assumption  

• Markov models

• Assessing significance of sequence patterns

– Simulations
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Probability Models of Sequences

• Sample questions when interpreting genomes:

– Is this sequence a splice site?

– Is this sequence part of the coding region of a gene?

– Are these two sequences evolutionarily related?

– Does this sequence show evidence of selection?

• Computational analysis can’t answer:

– only generates hypotheses

which must ultimately be tested by experiment. 

• But hypotheses should 

– have some reasonable chance of being correct, and 

– carry indication of reliability.
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• We use probability models of sequences to address 

such questions. 

• Not the only approach, but usually the most 

powerful, because 

– seqs are products of evolutionary process which is itself

probabilistic

– want to detect biological “signal” against “noise” of 

background sequence or mutations



• “All models are wrong; some models are useful.”  

– George Box

• “What is simple is always wrong. What is not is 

unusable.” – Paul Valery

• “Everything should be made as simple as 

possible, but not simpler.” – Albert Einstein (?)

• Some disadvantages of complexity:

– computational challenge

– (lack of) interpretability

– overfitting
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Models: simplicity vs complexity
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Basic Probability Theory Concepts

• A sample space S is set of all possible outcomes of a 
conceptual, repeatable experiment. 

– |S| <  in most of our examples. 

– e.g. S = all possible sequences of a given length. 

• Elements of S are called sample points. 

– e.g. a particular seq = outcome of “experiment” of extracting seq 
of specified type from a genome.

• A probability distribution P on S assigns non-neg real 
number P(s) to each s S, such that 

sS P(s) = 1  

(So 0  P(s)  1  s )

– Intuitively, P(s) = fraction of times one would get s as result of the 
expt, if repeated many times.
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• A probability space (S,P) is a sample space S with a 

prob dist’n P on S.

• Prob dist’n on S is sometimes called a probability 

model for S, particularly if several dist’ns are being 

considered. 

– Write models as M1, M2 , probabilities as P(s | M1), 

P(s | M2). 

– e.g. 

• M1 = prob dist’n for splice site seqs,  

• M2  = prob dist’n for “background” (arbitrary genomic) seqs.
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• An event E is a criterion that is true or false for each

sS. 

– defines a subset of S (sometimes also denoted E). 

– P(E) is defined to be s|E is true P(s).

• Events E1, E2 , ... , En are mutually exclusive if no 

two of them are true for the same point; 

– then P(E1 or E2 or ... or En) = 1i n P(Ei). 

• If E1, E2 , ... , En are also exhaustive, i.e. every s in S

satisfies Ei for some i, then 1i n P(Ei) = 1.
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• For events E and H, the conditional probability of E
given H, is

P(E | H)  P(E and H) / P(H) 

(= prob that both E and H are true, given H is true) 

– undefined if P(H) = 0.

• E and H are (statistically) independent if 
P(E) = P(E | H) 

(i.e. prob. E is true doesn’t depend on whether H is true);

or equivalently 

P(E and H) = P(E)P(H).
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Probabilities on Sequences

• Let S = space of DNA or protein sequences of length n. 

Possible assumptions for assigning probabilities to S:

– Equal frequency assumption: All residues are equally probable at 

any position; 

• P(Er
(i)) = P(Eq

(i)) for any two residues r and q, 

– where Er
(i) means residue r occurs at position i, then 

• Since for fixed i the Er
(i) are mutually exclusive and exhaustive, 

P(Er
(i)) = 1 / |A| 

where A = residue alphabet

P(Er
(i)) = 1/20 for proteins, 1/4 for DNA).

– Independence assumption: whether or not a residue occurs at a 

given position is independent of residues at other positions.
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• Given above assumptions, the probability of the sequence 

s = ACGCG

(in the space S of all length 5 sequences) is calculated by 
considering 5 events:

– Event 1 is that first nuc is A.    Probability = .25. 

– Event 2 is that 2d nuc is C.      Probability = .25. 

– Event 3 is that 3d nuc is G.       Probability = .25. 

– Event 4 is that 4th nuc is C.      Probability = .25. 

– Event 5 is that 5th nuc is G.      Probability = .25.

By independence assumption, prob of all 5 events occurring 
is the product (.25)5 = 1/1024. 

Since s is the only sequence satisfying all 5 conditions, P(s) 
= 1/1024.
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• More generally, under equal freq and indep 
assumptions, 

prob of nuc sequence of length n =  .25n,

prob of protein sequence of length n =  .05n 

in the space S of length n sequences.



‘Background’ models

• ‘Average’ model for genome; contrasted 

with ‘foreground’ models (for sites & other 

regions of interest)

• Whole genome vs non-site
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Genome background models:

Failure of equal frequency assumption 

• For most organisms, the genomic nucleotide 
composition is significantly different from .25 for 
each nucleotide, e.g.:

– H. influenza .31 A, .19 C, .19 G, .31 T

– P. aeruginosa .17 A, .33 C, .33 G, .17 T

– M. janaschii .34 A, .16 C, .16 G, .34 T

– S. cerevisiae .31 A, .19 C, .19 G, .31 T

– C. elegans .32 A, .18 C, .18 G, .32 T

– H. sapiens .29 A, .21 C, .21 G, .29 T



14

• Note approximate symmetry: A  T, C  G, 

– even though we’re counting nucs on just one strand. 

– Expect exact equality when counting both strands

• Explanation: 

– Although individual biological features may have non-
symmetric composition (local asymmetry), 

– usually features are distributed approx randomly w.r.t. 
strand, 

– so local asymmetries cancel, yielding overall 
symmetry.
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General Hypotheses Regarding 

Unequal Frequency

• Neutralist hypothesis:  mutation bias 

– e.g. due to nucleotide pool composition

• Selectionist hypothesis: selection

– selection on (many) particular nucleotides

– selection on mutational bias mechanisms

– …
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Genome background models:

Failure of independence assumption
Nucleotide Freqs (C. elegans chr. 1):

A 4575132 (.321) ; C 2559048 (.179) ; G 2555862 (.179); T 4582688 (.321)

dinucleotide frequencies (5’ nuc to left, 3’ nuc at top – e.g. obs freq 
of ApC is .047):    (Note “symmetry”!)

Observed              Expected (under independence)
A     C     G     T         A     C     G    T

A  0.135 0.047 0.051 0.088     0.103 0.057 0.057 0.103

C  0.061 0.035 0.033 0.051     0.057 0.032 0.032 0.058

G  0.063 0.034 0.034 0.047     0.057 0.032 0.032 0.057

T  0.061 0.064 0.061 0.135     0.103 0.058 0.057 0.103

Observed / Expected 

A     C     G     T 

A  1.314 0.818 0.885 0.853

C  1.055 1.075 1.031 0.886

G  1.106 1.062 1.074 0.818

T  0.597 1.105 1.056 1.313
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Dinucleotide frequencies

• Underrepresentation of TpA: found in nearly all 
genomes; 

– reason unknown: 

• neutral (mutation patterns)? 

• selection?

• Overrepresentation of ApA, TpT, CpC, GpG – also 
frequently observed in other organisms.

• Unlike mammalian genomes, no underrepresentation 
of CpG in C. elegans

– CpG not methylated in C. elegans (or most other non-
vertebrates).
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Dinucleotide Freqs – H. sapiens Chr.21
Nucleotide Freqs:

A 10032226  0.297; T  9962530  0.295

G  6908202  0.204; C  6921020  0.205

Entropy: 1.976 bits

Observed Dinuc Freqs        Expected (under independence)

A     C     G     T            A     C     G     T

A  0.099 0.051 0.069 0.078        0.088 0.061 0.061 0.087

C  0.073 0.052 0.011 0.069        0.061 0.042 0.042 0.060

G  0.059 0.043 0.052 0.050        0.061 0.042 0.042 0.060

T  0.066 0.059 0.072 0.098        0.087 0.060 0.060 0.087

Observed / Expected

A     C     G     T

A  1.124 0.839 1.139 0.891

C  1.204 1.243 0.260 1.139

G  0.974 1.025 1.245 0.839

T  0.752 0.976 1.204 1.125
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5-methylcytosine (mC): the ‘5th base’

• Comprises ~1-6% of 

mammalian & plant 

genomes

• Methylation does not

affect base-pairing:
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• But it does affect 

– protein binding, e.g. Sp1, EGR1, CTCF

 effects on gene expression, development, cellular differentiation, 

transposon suppression, embryogenesis, imprinting, X-inactivation, 

chromatin structure, tumorigenesis

mouse methyltransferase knockouts are embryonic lethal

– mutation rate: mC is a mutation ‘hotspot’:

http://www.ncbi.nlm.nih.gov

http://www.ncbi.nlm.nih.gov/
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• In mammals methylated C’s (nearly) always occur 

as part of a CpG dinucleotide:

5’ mC G 3’

3’ G mC 5’

• But some Cs not in CpGs are methylated, in some 

cell types 
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• as many as 20-30% of all new single-base mutations in 

mammalian genomes may be at CpGs, judging from

– analysis of disease-causing mutations, 

– comparison of closely related species 

– polymorphism data

• As a result, CpGs are substantially underrepresented in 

mammalian DNA:

– expected frequency .21 .21 = .044 (in mammalian genomes, G+C 

freq is about .42, A+T about .58)

– only see about 1/5 that many.

• Conversely, TpGs and CpAs are overrepresented
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Dinucleotide Freqs – H. sapiens Chr.22
Nucleotide Freqs:

A  8745910  0.261; T  8720493  0.261

G  7999585  0.239; C  7997931  0.239

Entropy: 1.999 bits

Observed Dinuc Freqs        Expected (under independence)

A     C     G     T            A     C     G     T

A  0.077 0.051 0.075 0.058        0.068 0.062 0.062 0.068

C  0.077 0.071 0.016 0.075        0.062 0.057 0.057 0.062

G  0.061 0.057 0.071 0.051        0.062 0.057 0.057 0.062

T  0.047 0.061 0.077 0.076        0.068 0.062 0.062 0.068

Observed / Expected

A     C     G     T

A  1.125 0.817 1.205 0.855

C  1.233 1.236 0.285 1.206

G  0.975 0.989 1.237 0.818

T  0.684 0.977 1.233 1.124
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Genome background models:

Failure of independence assumption
Nucleotide Freqs (C. elegans chr. 1):

A 4575132 (.321) ; C 2559048 (.179) ; G 2555862 (.179); T 4582688 (.321)

dinucleotide frequencies (5’ nuc to left, 3’ nuc at top – e.g. obs freq 
of ApC is .047):    (Note “symmetry”!)

Observed              Expected (under independence)
A     C     G     T         A     C     G    T

A  0.135 0.047 0.051 0.088     0.103 0.057 0.057 0.103

C  0.061 0.035 0.033 0.051     0.057 0.032 0.032 0.058

G  0.063 0.034 0.034 0.047     0.057 0.032 0.032 0.057

T  0.061 0.064 0.061 0.135     0.103 0.058 0.057 0.103

Observed / Expected 

A     C     G     T 

A  1.314 0.818 0.885 0.853

C  1.055 1.075 1.031 0.886

G  1.106 1.062 1.074 0.818

T  0.597 1.105 1.056 1.313
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Conditional probability (in C. elegans) of a given 

nucleotide (top) occurring, given the preceding 

nucleotide (left)

A     C     G     T

A  0.421 0.147 0.159 0.274

C  0.338 0.193 0.185 0.284

G  0.355 0.190 0.192 0.263

T  0.191 0.198 0.189 0.421



Markov models

• Such conditional probabilities can be used 

to define a first-order Markov model (or 

Markov chain model) for background 

sequence probabilities:

P(s1 s2 s3
… sn)

≡ P(s1) P(s2 | s1) P(s3 | s2)  
… P(sn | sn -1) 
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• Similarly, one can define an a order-k Markov 

model in which the probability of si is 

conditional on  si-k
… si-2 si-1

(i.e. the k preceding residues)

• Note that the required number of parameters is 

exponential in k

• independence model = order-0 Markov model

28



29

Assessing significance of sequence patterns 

• Problem: Is a particular sequence pattern, e.g.

– a match between genomes, or 

– a region of a particular composition (e.g. GC-rich)

likely to be “biologically significant”, e.g. indicating

– an evolutionary relationship, or

– a functional feature
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Assessing significance of sequence patterns 
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‘Negative control’ sequences

1. real biological ‘background’ sequences known not 
to have the feature in question

– ideal if available – but usually hard to find!

2. simulated sequences

– requires probability model retaining some features of 
real sequences

– Quantity: In general, want multiple such sequences

– Quality: is the model complex enough?
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Theoretical score distributions

• For simple probability models, can sometimes avoid 
simulations by finding a  theoretical probability 
distribution  

– approximate, e.g. Karlin-Altschul for BLAST hits 

– or exact

for the scores. 

• Alternatively, can fit a theoretical distribution to the 
observed scores for simulated data

– Avoids need for large number of simulations



Homework 2

• Purpose: Assess significance of HW 1 

genomic matches

• Simulate negative controls using two 

different background sequence models:

– Order 0 Markov

– Order 1 Markov

• Then find matches (using HW 1 suffix array 

method)  between real sequence and these 

control sequences

– Ideally should do lots of simulations!!
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