Lecture 5

- Comparing probability models: *likelihood ratios*
 - Hypothesis testing
 - Neyman-Pearson lemma
- Weight matrices
- Score distributions

Comparing Alternative Probability Models

- We will want to consider more than one model at a time, in following situations:
 - To differentiate between two or more hypotheses about a sequence
 - To generate increasingly refined probability models that are progressively more accurate

- First situation arises in testing biological assertion, e.g. "is this a coding sequence?"
 - Compare two models:
 - 1. model associated with a hypothesis H_{coding} ,
 - assigns each sequence the prob of observing it under expt of drawing a coding sequence at random from genome
 - 2. model associated with a hypothesis $H_{noncoding}$,
 - assigns each sequence the prob of observing it under expt of drawing a non-coding sequence at random

Likelihood Ratios

• The *likelihood* of a model *M* given an observation *s* is

$$L(M \mid s) = P(s \mid M)$$

This is *not* the *probability* of the model! – (the sum over all models is not 1).

• The *likelihood ratio* (*LR*) of two models M_a and M_0 is given by

$$LR(M_a, M_0 \mid s) = \frac{L(M_a \mid s)}{L(M_0 \mid s)}$$

The numerator and denominator may both be very small!

• The *log likelihood ratio* (*LLR*) is the logarithm of the likelihood ratio.

Simple Hypothesis Testing

- Suppose we wish to decide between two models:
 - $-M_a$ (the *alternative hypothesis*), and
 - $-M_0$ (the *null hypothesis*)

using an observation s from a sample space S. (e.g.

- s a sequence,
- $-M_a$ a site model
- $-M_0$ a "background" (non-site) model.

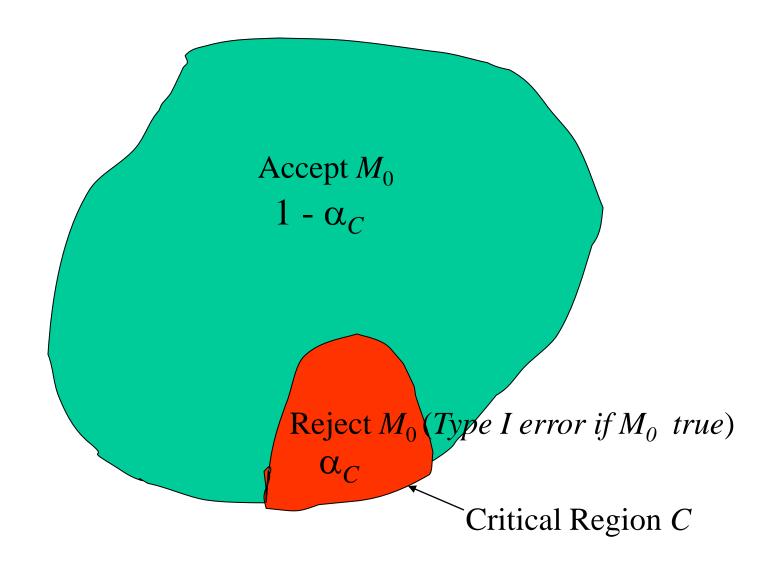
• Strategy:

- choose a subset $C \subset S$, called the *critical region* for the comparison.
- If s falls within C, reject M_0 (accept M_a),
- otherwise accept M_0 (reject M_a).

Types of Errors with Hypothesis Test

- a *Type I error* occurs if we reject M_0 when it is true.
 - For a given critical region C, the prob of committing a Type I error is denoted α_C $\alpha_C = P(C \mid M_0) = \sum_{s \in C} P(s \mid M_0)$
- α_C is called the *significance level* of the test

Sample Space S – probabilities under M_0

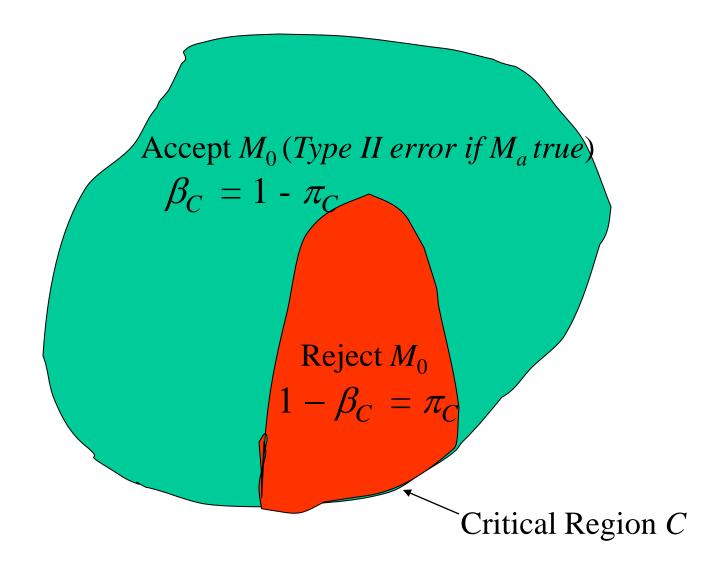


- a *Type II error* occurs if we accept M_0 when it is false.
 - For a given C, prob of committing a Type II error is denoted β_C

$$\beta_C = \sum_{s \notin C} P(s \mid M_a) = 1 - P(C \mid M_a)$$

• $\pi_C = 1 - \beta_C$ is called the *power* of the test.

Sample Space S – probabilities under M_a



- Designing a test involves a tradeoff between significance and power
 - smaller C gives smaller Type I error but larger Type II error (lower power).

Likelihood Ratio Tests

• A *likelihood ratio test* of models M_a and M_0 is a hypothesis test of the two models, with critical region C defined by

$$C = C_{\Lambda} = \{ s \mid LR(M_a, M_0 \mid s) \ge \Lambda \}$$

for some non-negative constant Λ , the *cutoff value*.

- Neyman-Pearson lemma motivates use of the *likelihood ratio* as an optimal *discriminator*, or "score"
 - even in contexts where we aren't explicitly testing hypotheses.
- any monotonic function f(LR) of likelihood ratio has equivalent optimality properties
 - because defines the same set of critical regions: $LR(M_a, M_0 \mid s) \ge \Lambda \Leftrightarrow f(LR(M_a, M_0 \mid s)) \ge f(\Lambda)$
- convenient to take f to be the log function, in which case we get the *log likelihood ratio*.

Neyman-Pearson lemma

Let M_a and M_0 be two models, and C_A the critical region defined by a likelihood ratio test of M_a vs. M_0 with

- cutoff value Λ ,
- significance level α_{Λ} , and
- power $\pi_A = 1 \beta_A$.

Then if C is any other critical region, we have

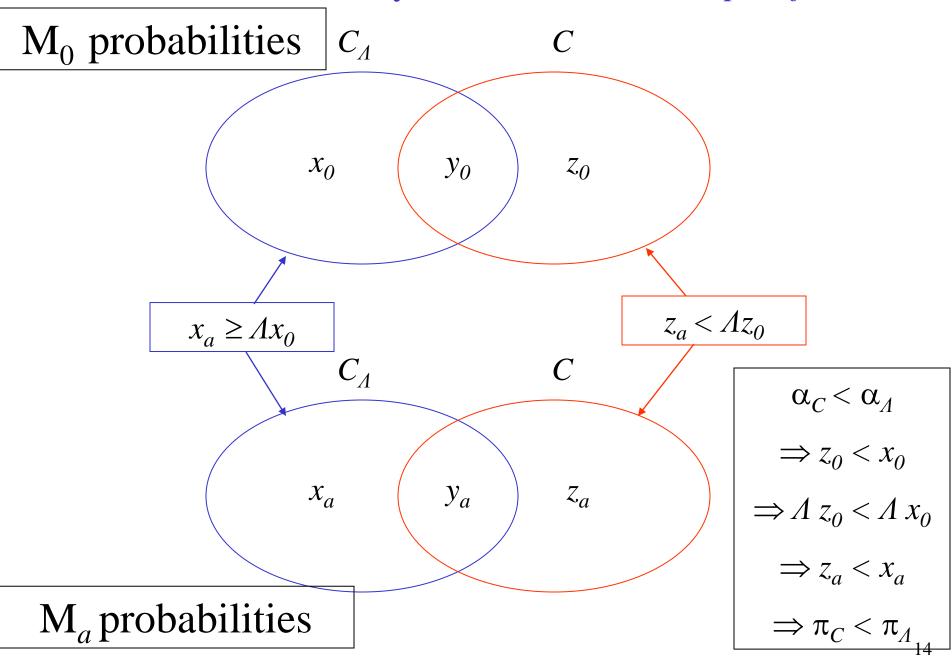
- If $\alpha_C < \alpha_A$, then $\pi_C < \pi_A$ (and $\beta_C > \beta_A$)
- If $\alpha_C = \alpha_A$, then $\pi_C \le \pi_A$ (and $\beta_C \ge \beta_A$)

In other words, the likelihood ratio test with significance level α_{Λ} is the most powerful test

(has the lowest type II error rate)

with that significance level.

Idea of Neyman-Pearson lemma *proof*:



■ **Proof**: Suppose $\alpha_C < \alpha_A$. Then

$$\sum_{s \in C} P(s \mid M_0) < \sum_{s \in C_{\Lambda}} P(s \mid M_0)$$

Subtract from both sides the terms involving $s \in C \cap C_{\Lambda}$ This leaves

$$(1) \quad \sum_{s \in C \setminus C_{\Lambda}} P(s \mid M_0) < \sum_{s \in C_{\Lambda} \setminus C} P(s \mid M_0)$$

• By definition of the likelihood ratio test, for any observation *s*,

$$s \in C_{\Lambda} \Leftrightarrow P(s \mid M_a) \ge \Lambda P(s \mid M_0)$$

• From this, it follows that

(2)
$$\sum_{s \in C \setminus C_{\Lambda}} \frac{1}{\Lambda} P(s \mid M_a) < \sum_{s \in C \setminus C_{\Lambda}} P(s \mid M_0)$$

and

(3)
$$\sum_{s \in C_{\Lambda} \setminus C} P(s \mid M_0) \leq \sum_{s \in C_{\Lambda} \setminus C} \frac{1}{\Lambda} P(s \mid M_a)$$

• Combining (2), (1), and (3)

$$\sum_{s \in C \setminus C_{\Lambda}} \frac{1}{\Lambda} P(s \mid M_a) < \sum_{s \in C \setminus C_{\Lambda}} P(s \mid M_0) < \sum_{s \in C_{\Lambda} \setminus C} P(s \mid M_0) \le \sum_{s \in C_{\Lambda} \setminus C} \frac{1}{\Lambda} P(s \mid M_a)$$

so (cancelling the common factor $1 / \Lambda$)

$$\sum_{s \in C \setminus C_{\Lambda}} P(s \mid M_a) < \sum_{s \in C_{\Lambda} \setminus C} P(s \mid M_a)$$

so, adding in the terms corresponding to $s \in C \cap C_A$

$$\sum_{s \in C} P(s \mid M_a) < \sum_{s \in C_A} P(s \mid M_a)$$

i.e $\pi_C < \pi_A$ The other part of the lemma ($\pi_C \le \pi_A$ if $\alpha_C = \alpha_A$) is proved similarly.

Weight Matrices for Site Models

• LR for sites: (prob under site model) / (prob under non-site (background) model)

$$\frac{P(s \mid M_{\text{site}})}{P(s \mid M_{\text{background}})} = \frac{\prod_{1 \leq i \leq n} P_i(s_i \mid M_{\text{site}})}{\prod_{1 \leq i \leq n} P_i(s_i \mid M_{\text{background}})}$$

- $LLR = \sum_{1 \le i \le n} log(P_i(s_i \mid M_{site})) log(P_i(s_i \mid M_{background}))$
 - compute by reading from a *matrix* whose *i*-th column contains values $\log(P_i(r|M_{\text{site}})) \log(P_i(r|M_{\text{background}}))$ for each residue r (with r labelling the rows).
 - We use \log_2 .

Example: 3' splice sites in C. elegans

- For background distribution take
 - genomic residue freqs computed from C. elegans chrom. I:

```
A 4,575,132: 0.321
```

C 2,559,048: 0.179

G 2,555,862: 0.179

T 4,582,688: 0.321

- other choices are possible, e.g. composition of transcribed regions
- For the *site distribution* we take
 - site residue freqs from 8192 sites:

Weight Matrix – 3' Splice Sites

SITE FREQUENCIES:

Α	0.400	0.429	0.282	0.058	0.008	0.092	0.029	1.000	0.000	0.410	0.293	0.307
C	0.118	0.079	0.081	0.029	0.016	0.135	0.834	0.000	0.000	0.156	0.187	0.225
G	0.072	0.070	0.063	0.018	0.005	0.073	0.001	0.000	1.000	0.310	0.159	0.191
Т	0.409	0.422	0.574	0.896	0.971	0.700	0.135	0.000	0.000	0.124	0.361	0.276

BACKGROUND FREQUENCIES:

A	0.321	0.321	0.321	0.321	0.321	0.321	0.321	0.321	0.321	0.321	0.321	0.321
С	0.179	0.179	0.179	0.179	0.179	0.179	0.179	0.179	0.179	0.179	0.179	0.179
G	0.179	0.179	0.179	0.179	0.179	0.179	0.179	0.179	0.179	0.179	0.179	0.179
T	0.321	0.321	0.321	0.321	0.321	0.321	0.321	0.321	0.321	0.321	0.321	0.321

WEIGHTS:

A	0.32	0.42	-0.18	-2.46	-5.29	-1.79	-3.45	1.64	-99.00	0.36	-0.13	-0.06
С	-0.60	-1.18	-1.15	-2.64	-3.51	-0.41	2.22	-99.00	-99.00	-0.20	0.06	0.33
G	-1.31	-1.35	-1.51	-3.35	-5.23	-1.30	-6.93	-99.00	2.48	0.79	-0.17	0.10
T	0.35	0.39	0.84	1.48	1.60	1.12	-1.24	-99.00	-99.00	-1.37	0.17	-0.22

Scoring a Candidate 3' Splice Site

```
C - 0.60
         -1.18 -1.15 -2.64 -3.51
                                  -0.41 2.22 -99.00 -99.00
                                                            -0.20 0.06
                                                                         0.33
G -1.31
        -1.35 -1.51 -3.35 -5.23 -1.30 -6.93 -99.00 2.48 0.79 -0.17 0.10
        0.39  0.84  1.48  1.60  1.12  -1.24 -99.00 -99.00 -1.37  0.17 -0.22
   0.35
                  C
                               T
                                     A
                                            C
                                                         G
                                                                      Α
   0.35 + 0.39 + -1.15 + 1.48 + 1.60 + -1.79 + 2.22 + 1.64 + 2.48 + 0.36 + -0.13 + -0.22 = 7.23
```

0.42 - 0.18 - 2.46 - 5.29 - 1.79 - 3.45 1.64 - 99.00 0.36 - 0.13

-0.06

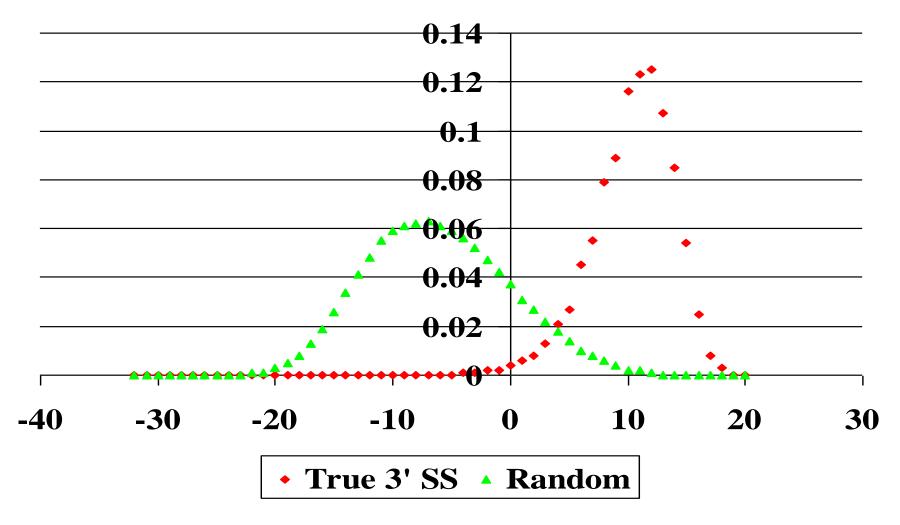
- General def.: a weight matrix W has entries w_{rj} indexed by residues $r \in A$, and $1 \le j \le n$
- *score* of a sequence $s = (s_1 s_2 ... s_n)$ is

$$\sum_{1 \le j \le n} w_{s_j j}$$

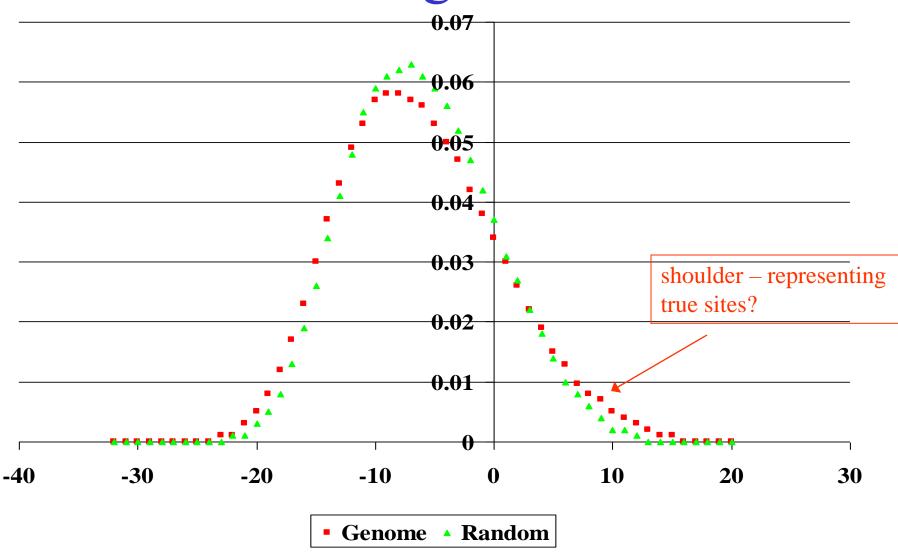
• In the site case,

$$W_{rj} = \log(P_j(r \mid M_{\text{site}})) - \log(P_j(r \mid M_{\text{background}}))$$

Score Distributions (AG sites)—3' SS Weight Matrix



Score Distributions (AG sites)—3' SS Weight Matrix



Some Issues for Site Weight Matrices (to be discussed later)

- Can derive *theoretical* probability distribution for scores, and compare with above *empirical* distributions
- Small sample correction to frequencies: pseudocounts
- Avoiding *overfitting* (e.g. using too large a window)