
Lecture 7:

DAGs & Dynamic Programming

• Directed acyclic graphs

• Dynamic programming (‘The Fundamental

Algorithm of Computational Biology’)

– highest weight paths in weighted DAGs

1

2

Directed Graphs

• A directed graph is a pair (V, E) where

– V is a finite set of vertices, or nodes.

– E is a set of ordered pairs (called edges) of vertices in

V.

• An edge (vi, vj) is said to leave vi and to enter vj.

– (vi and vj are vertices)

• in-degree of a vertex = # edges entering it;

• out-degree = # edges leaving it.

3

Example:

• V = {1,2,3,4,5,6},

• E = {(1,2), (1,3), (2,4), (4,1), (5,3), (3,1)}

• Vertex 3 has in-degree 2 and out-degree 1.

1

2
4

3

5
6

4

Paths and Cycles
• A path of length k in G from u to u’ (vertices) is

– a sequence P of vertices (v0, v1, . . . , vk) such that

• v0 = u,

• vk = u’, and

• (vi-1, vi) is an edge for i = 1,2, . . ., k.

• A path can have length 0.

• We write |P| = k.

• A cycle is a path of length 1 from a vertex to itself.

• In example at right,

– (1,2,4) is a path,

– (1,3,5) is not, and

– (1,2,4,1) and (1,3,1) are cycles.

1

2
4

3

5
6

5

• Can join

– any path (u, ... , v) from u to v, to

– any path (v, ... , w) from v to w

to get a path (u, ... , v, ... , w) from u to w.

6

DAGs

• A directed acyclic graph (DAG) is a directed graph with
no cycles.

• In a DAG, for distinct nodes vi and vj, we say
– vi is a parent of vj, and vj is a child of vi, if

• there is an edge (vi, vj)

– vi is an ancestor of vj, and vj is a descendant of vi, if
• there is a path from vi to vj

• In a DAG the length of a path cannot exceed |V| - 1,
– (where |V| = total # vertices in graph)

because
– in a path of length |V|,

• at least one vertex v would have to appear twice in the path;

– but then there would be a path from v to v, i.e. a cycle.

7

Structure of DAGs

• Define the depth of a node v in V as:

– the length of the longest path ending at v;

by above, the depth is well-defined and |V| - 1.

• Every descendant w of a node v has higher depth

than v: If

– (u, ... ,v) is path of length n = depth(v) ending at v,

and

– (v, ..., w) is path from v to w,

then (u, ..., v, ..., w) is a path of length > n ending

at w, so depth(w) > n.

8

• The nodes on any path are of increasing depth.

• Every node v of positive depth has a parent of depth

exactly one less:

– Let (u, ... , v’, v) be path of length n = depth(v) ending at v.

– Then v’ is a parent of v.

– Since (u, ... , v’) has length n – 1, depth(v’) n – 1.

– Since also depth(v’) < n (because v is a descendant of v’),

depth(v’) is exactly n – 1.

9

Depth 0

Depth 1

Depth 2

Depth 3

v0

v2 v3

v7

v1

v5

v8

v4

v6

v9

v10

.

.

.

10

Important special cases:

• A (rooted) tree is a DAG which

– has unique depth 0 node (the root), and

– every other node has in-degree 1

• (i.e. has a unique parent, of depth one less than that of the node).

• A binary tree is a tree in which

– every node has out-degree at most 2.

• A linked list is a tree in which

– every node has out-degree at most 1

– or equivalently, a DAG in which at most one node of each

depth

11

v0

v4v3

v2v1

v5

v7
v6 v8

binary tree

v0

linked list

v1

v2

v3

v4

12

The Edit Graph for a Pair of Sequences

A C G T T G A A T G A C C C A

G

C

A

T

G

A

C

G

A

13

WDAG for 3-state HMM,

length n sequence

position i position i+1position i-1

weights are emission

probabilities ek(bi) for ith

residue bi weights are transition

probabilities akl

......

bi-1
bi bi+1

e1(bi)

e2(bi)

e3(bi)

a11
a12

a33

a11
e1(bi-1)

14

Remarks on Depth Structure

• For dynamic programming algorithm

– we need an order v1, v2, ..., vn for the vertices

• (not a path!)

in which parents appear before children.

– From the above, depth order

• (in which depth 0 nodes are listed first, then depth 1 nodes, etc.)

is such an order.

– In general there are many other such orders.

• We haven’t given constructive procedure for finding
the depths of all vertices.

– For an arbitrary DAG, can be done in O(|V| + |E|) time;

– we omit algorithm, since for DAGs related to sequence
analysis, the depth structure is obvious.

15

Weighted Directed Graphs
• A weighted directed graph is

– a directed graph (V, E) together with

– a function w from E to the real numbers,

• i.e. with a numerical weight w(e) (which may be positive,
negative, or 0) associated to each edge e.

A weighted DAG is called a WDAG.

• In our applications, the weights usually come
from a probability model:

– probabilities

– log(probabilities)

– LLRs

16

Path Weights
• The (sum) weight of a path is defined to be the

sum of the weights on the edges of the path.

• Similarly, the product weight of a path is the
product of the edge weights

– usually only consider this when all weights are non-
negative.

• weight of a path P is written w(P)

• For a path of length 0 (i.e. consisting of a single
vertex):

– the sum weight is 0

– the product weight is 1

17

Highest Weight Paths on

WDAGs

• Problem: find a path with the highest possible

weight.

• Solution:

– “Brute force” approach

• i.e. simply enumerating all possible paths and comparing their

weights

is usually impractical (too many paths!)

– Instead, use the method of dynamic programming

• Richard Bellman (~1950)

• Reduction to nested subproblems

18

• Let Pn = (v0, v1, . . . , vn) be a path of highest weight.

• Then for each k < n, the sub-path Pk = (v0, v1, . . . , vk)
must have highest weight of all paths ending at vk,
because

– if Q = (u0, u1, . . . , vk) were another path ending at vk and
having higher weight than Pk,

– then the path (Q , vk+1 , ..., vn) would have weight

w((Q, vk+1 , ..., vn)) = w(Q) + w((vk , ..., vn))

> w(Pk) + w((vk , ..., vn)) = w(Pn),

contradicting assumption that Pn has highest weight.

19

Subpaths of a highest-weight path

can’t be improved:

v0

v1

v2

v3

v4

v5

u1

u0

20

• So generalize the problem as follows:

• find, for each vertex v, the highest weight of all paths
ending at v – call this w(v)

• Can find w(v) in single pass through V, as follows:
– process the v in depth order (or any order in which parents

precede children)

– if v has no parents, w(v) = 0 (the only path ending at v is (v)).

– for any other v, except for the path (v) (which has weight 0), any
path ending at v is of form (v0, v1, . . ., vk , u , v). Then

– u is a parent of v, so w(u) has already been computed, and
w((v0, v1, . . . , vk , u , v)) w(u) + w((u,v))

with equality for an appropriate choice of vi.

– Therefore we may compute w(v) as

))))(()((maxmax(0,)(
) (

u,vwuwvw
vparentsu

+=

21

Example

Depth 0

Depth 1

Depth 2

Depth 3

v0

v2 v3

v7

v1

v5

v8

v4

v6

v9

v13
2 1 -1

3

-3

1

5

2
-2

-30

Depth 4 v10 v11 v12

2
-6 3 2

22

w(v) – depth 0 nodes

Depth 0

Depth 1

Depth 2

Depth 3

v0

v2 v3

v7

v1

v5

v8

v4

v6

v9

v13
2 1 -1

3

-3

1

5

2
-2

-30

Depth 4 v10 v11 v12

2

0 0 0

-6 3 2

23

w(v) – depth 1 nodes

Depth 0

Depth 1

Depth 2

Depth 3

v0

v2 v3

v7

v1

v5

v8

v4

v6

v9

v13
2 1 -1

3

-3

1

5

2
-2

-30

Depth 4 v10 v11 v12

2

0 0 0

2 1 0

-6 3 2

24

w(v) – depth 2 nodes

Depth 0

Depth 1

Depth 2

Depth 3

v0

v2 v3

v7

v1

v5

v8

v4

v6

v9

v13
2 1 -1

3

-3

1

5

2
-2

-30

Depth 4 v10 v11 v12

2

0 0 0

2 1 0

3
5

-6 3 2

25

w(v) – depth 3 nodes

Depth 0

Depth 1

Depth 2

Depth 3

v0

v2 v3

v7

v1

v5

v8

v4

v6

v9

v13
2 1 -1

3

-3

1

5

2
-2

-30

Depth 4 v10 v11 v12

2

0 0 0

2 1 0

3
5

4
3 2

-6 3 2

26

w(v) – depth 4 nodes

Depth 0

Depth 1

Depth 2

Depth 3

v0

v2 v3

v7

v1

v5

v8

v4

v6

v9

v13
2 1 -1

3

-3

1

5

2
-2

-30

Depth 4 v10 v11 v12

223-6

0 0 0

2 1 0

3
5

4
3 2

0 6 5

27

• To reconstruct best path, need “traceback” pointer to
immediate predecessor of v in best path:

– in preceding graph, T(v) is the parent on red edge coming
into v

• if more than one such edge, pick one at random;

• if no such edge, T(v) = v

• Sometimes useful to record beginning of best path:

+

=
=

0)())(()((max arg

0)(
)(

)parents(

vwu,v w uw

vwv
vT

vu

=
=

0)())((

0)(
)(

vwvTB

vwv
vB

28

• Then highest weight of any path in graph is

maxv V (w(v))

– updated as each node is visited

• indicated by in preceding graph –

and so doesn’t require additional pass through vertices

• if u = argmaxv V (w(v)), can reconstruct highest weight
path by tracing back from u, using T:

– path ends at u;

– immediate predecessor of u is T(u);

– predecessor of T(u) is T(T(u)); etc.

– stop when T(v) = v.

• In preceding example, highest weight is 6 and u = v11

29

Dynamic programming on WDAGs

Depth 0

Depth 1

Depth 2

Depth 3

v0

v2 v3

v7

v1

v5

v8

v4

v6

v9

v13
2 1 -1

3

-3

1

5

2
-2

-30

Depth 4 v10 v11 v12

223-6

0 0 0

2 1 0

3
5

4
3 2

0 6 5

30

Complexity of Dynamic Programming

• Time to find a best path is O(|E|+|V|):

– in initial pass, visit each node, and each edge into that

node: O(|E|+|V|)

– in traceback, visit subset of nodes, and unique edge

from each node: O(|V|)

(Complexity to find all highest weight paths can be

higher)

For very large graphs, even O(|E|+|V|) may be

unacceptable!

31

• Space requirements:

– If only want weight of best path, and beginning and end,

then

– don’t need T(v), and

– only need retain w(v) and B(v) until have processed all children

of v (or when best path found so far ends at v).

Space depends on graph structure, but usually << O(|V|).

– If want path itself, must store T(v) v

– space = O(|V|)

– algorithms (for some graphs) to reduce this, but may take

more time.

32

Imposing constraints on allowed paths

• Above algorithm can easily be modified to find highest
weight path that

• starts in particular subset V’ of vertices

– don’t consider paths that start outside V’ :

• i.e. when computing w(v), don’t consider trivial path unless v V’

• ends in particular subset V’’

– only scan for the maximum w(v) over V’’

• goes through a particular vertex v

– use forward/backward algorithm (future lecture)

• or a combination of these!

33

Same dynamic programming approach

can be used to find:

• Highest product weight path (if weights are 0)

• Sum of product weights of all paths ending at particular
vertex

– sum over all edges coming into v, instead of maximizing

• Useful for HMM and phylogeny probability
calculations!

Finding multiple high-scoring paths

• If high-weight paths are important, we’ll want more

than one!

– But not slight perturbations of highest-weight path

• ‘Brute force’ algorithm:

– Find highest-weight path

– ‘Mask it’ (remove its edges from graph)

– Repeat above two steps until scores uninteresting

– can be O(N2), but often acceptable

• O(N) algorithms for WLLs

– Ruzzo-Tompa

– HMMs (Viterbi algorithm)
34

