Lecture 8:
Weighted linked lists

Simplifications to general WDAG algorithm

Sequence graphs & regions of atypical
residue composition

Defining & interpreting scores

Other applications
— motif clusters

— read count data

— coding sequence



Weighted Linked Lists (WLLS)

« WLL 1s linked list with weights on each edge
— simplest kind of WDAG.

* Paths = ‘segments’ or ‘regions’
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 Find highest-scoring segments by dynamic
programming
— Much better than “brute force” algorithm!

» Beginning & end of best path determine path
uniquely, so
— traceback Is unnecessary
— single pass through list suffices to find best path.



from lecture 7 :

» To reconstruct best path, need “traceback” pointer to
Immediate predecessor of v In best path:

v w(v) =0

T =1 argmax (w(u) + w(u,v)) w(v)=0

| U € parents(v)

— In preceding graph, T(v) is the parent on red edge coming
Into v
« if more than one such edge, pick one at random;
 if no such edge, T(v) =v

« Sometimes useful to record beginning of best path:

3(V) Vv w(v) =0
(V)= {B(T ) W(v) % 0



Implementing Dynamic Programming
In a Computer Program

« Storing entire graph has space complexity =
O(IVI+|E[)

 If graph has regular structure, can often “create” and
process vertices and edges on the fly, without
storing In memory
— cf. edit graph (to be defined later) for aligning sequences



« Highest weight path via dynamic programming (no explicit
graph):

In (pseudo-)pseudocode:
cumul = max = 0; start =1,
for(iI=1;1<N;i++) {

cumul += sJi];
If (cumul <0)
{cumul =0; start=i1+1;}

else if (cumul > max)
{max = cumul; best_end =i; best_start = start;}

}

If (max > S) print best_start, best_end, max

» Correspondence to (implicit) WLL
— 1 labels edges
— cumul =w(v) (where v is vertex at end of edge 1)
— max = best w(v) so far
— best_end =i corresponding to edge ending at best w(v) so far
— start = edge following B(v)



Applications to Sequences

» A seguence graph of a sequence Is linked list
whose edges are labelled by sequence residues
(in order):

* e.g. graph for sequence ACCGCTGCGAAG is:



Weighted Sequence Graphs

« |f attach weight to each residue, sequence graph
becomes a WLL.

2 1 1 1 1 -2 1 1 1 -2 -2 1
A C C 6 C T G €C G A A G
@—>0 >0 >0 >0 >0 >0 >0 >0 >0—>0>0—>0

N _

Highes?—sgring segment

» Useful for identifying sequence regions (‘target
regions’) with atypical composition:



* In DNA:

— GC-rich regions in AT-rich thermophile genomes

» generally correspond to RNA genes (Rob Klein &
Sean Eddy)

—horizontally transferred regions
—Isochores (mammalian DNA)

* In proteins:
— hydrophobic regions
e transmembrane segments
— hydrophilic regions
* loops, Intrinsically disordered regions
—aclidic or basic regions



‘Optimal’ scores

» Assume sequence consists of
— target regions with residue fregs t,
— background regions with residue freqs b,
— Independence assumption applies in both

* Then ‘best’ scoring system to detect the target
regions uses LLRs:

s(r) = log,(t, / b,)
* If residue freqgs are unknown, can usually estimate
Iteratively
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Karlin / Altschul approximation

« for s(r) =log,(t, / b,), expected # segments of
score > S In (random) backgd seq of length N

~ NK a»®
 for some constant K (not depending on S)
« Notethata>=altR=1/LR

so (apart from K) this Is essentially the
observation in lecture 6:
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(from lecture 6)
Average likelihood ratios

» average LR (for sites) = average spacing between
occurrences of ‘site-like’ sequences In background

* So e.g. for 3’ splice sites

— If the average LR is 1000, then one expects ‘splice-site-
like’ sequences to occur on average once per kb In
background sequence

— N.B. This says nothing about the frequency of actual
splice sites! (which could be greater or smaller than 1
per kb), and so doesn’t by itself provide the probability
that an apparent splice site Is an actual site.
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Example: Finding
60% G+C regions in 40% G+C genomes
 Score system (LLR) :
—S(C) =s(G) =logy, ((3/.2) =.176
—S(A) =s(T) =log,, ((2/.3) =-.176
» Av(g score (per position) in hiGC region:
3.176 +.3.176 + .2 (-.176) + .2(-.176) = .0352

« 100-base hiGC region:
Score ~3.52; occurs once per ~103°2 = 3.3 kb in backgd

« 300-base hiGC region:
Score ~10.5; occurs once per ~1019° =36 Gb
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¢ S0:
— 300-base hiGC regions are unexpected in background
* (likely have biological ‘significance’)
— but 100-base such regions are frequent
 Caveats to preceding:
— Applies to a specific assumed hiGC composition

— we Ignored K
 Can get more precise results by simulation
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Can use non-residue-based scores
to find:

 Regions enriched in particular sequence motifs:

— CpG islands in mammalian genomes
* positive weight (e.g. +17) to the first C of each CpG, and
* negative weight (e.g. —1) to every other base
(This approach was used in Nature human genome paper).

— Regions rich in (known) transcription-factor motifs

— Optimal scores are LLRs, but now based on ‘symbol
frequencies’ (where symbol = presence/absence of motif)
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CpG Islands

Regions in mammalian genomes where CpGs are not
significantly underrepresented

— likely not methylated in the germ line

Found at 5 ends of ~60% of protein-coding genes (& In
some RNA genes);

— frequently extends into first exon & even coding sequence
More likely to be associated with “housekeeping” genes
(expressed in all or most cells),

— less frequently with tissue-specific genes

May play regulatory role (methylation of island can shut
down gene)

Substantial length variation: 75% are less than 850bp, but
longest (in human) Is 37kb
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» Regions targeted by next-gen read experiments
(symbols = read start counts)

— CNVs (Homework 6)
— Hypersensitive sites
— CHIP-seq
« Conserved regions In sequence alignments
(symbols = alignment columns)
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» Coding sequences (symbols = successive
trinucleotides within a reading frame)

— Target fregs: codon fregs in known coding seq
— Background: trinuc freqgs in background
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From Initial sequencing and analysis of the human genome, International Human Genome Sequencing Consortium, Nature 409, 860-921 (2001)

— 171 UUU AAA O [~ 147 UCU AGA 10 124 UAU \ AUA 1 99 UGU \ ACA 0
Phe x 7 Tyr X Cys x
— 203 UUC GAA 14 & 172 UCC GGA © 158 UAC — GUA 11 119 UGC — GCA 30
r
[~ 73 UUA — UAASB 118 UCA —UGA 5§ SO0~ 0 UAA —UUA 0 S®©P ™ 0 UGA ~UCA 0
Leu
= 125 UUG — CAA B ~ 45 UCG T CGA 4 stop— O UAG —CUA 0 Trp— 122 UGG ~CCA 7
[~ 127 CUU 7AAG13 [~ 175 CCU 7AGG 1 [~ 104 CAU xAUG 0 [~ 47 CGU 7ACG 9
His
187 CUC GAGO 197 CCC GGG 0 — 147 CAC — GUG 12 107 CGC GCG 0
Leu Pro Arg
69 CUA — UAG2 170 CCA — UGG 10 & [~ 121 CAA — UUG 11 63 CGA T UCG 7
n
— 392 CUG — CAG®S — 69 CCG — CGG 4 — 343 CAG ~CUG 21 — 115 CGG ~ CCG 5
165 AUU AAU 13 [~ 131 ACU AGU 8 ™ 174 AAU AUU 1 [~ 121 AGU ACU 0
7 7 Asn x Ser X
lle| 218 AUC GAU 1 192 ACC GGU © — 199 AAC GUU 33 —~ 191 AGC GCU 7
Thr
71 AUA T UAUS 150 ACA —UGU 10 i [~ 248 AAA T UUU 18 % 113 AGA T UCU 5
¥s )
Mat — 221 AUG — CAU17 — 63 ACG T CGU 7 — 331 AAG T CUU 22 — 110 AGG ~ CCU 4
[~ 111 GUU 7AACZO [~ 185 GCU 7AGC 25 i [~ 230 GAU xAUC 0 ~ 112 GGU &ACC 0
p
146 GUC GAC O 282 GCC GGC 0 — 262 GAC GUC 10 &y 230 GGC GCC 1
Val Ala
72 GUA T UACS 160 GCA — UGC 10 = [~ 301 GAA T UUC 14 168 GGA T UCC 5
u
— 288 GUG — CAC19 — 74 GCG — CGC § — 404 GAG —CUC 8 — 160 GGG ~ CCC 8
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Coding sequences In prokaryotes

o Starting model:
— codon fregs 1/ 61
— background freqs 1 / 64 (equal freq assumption)
— score per codon: log,,(64 / 61) = .021
— times 300 codons (typical gene len): 6.25
—10%25=1.8 Mb
— Requirement for starting ATG — factor of 64

— Can detect typical genes without any amino acid or
codon bias info!

 Get better fregs from these predictions; iterate
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