
Lecture 8: Weighted linked lists

- Simplifications to general WDAG algorithm
- Sequence graphs & regions of atypical residue composition
- Defining & interpreting scores
- Other applications
 - motif clusters
 - read count data
 - coding sequence

Weighted Linked Lists (WLLs)

- *WLL* is linked list with weights on each edge simplest kind of WDAG.
- Paths = 'segments' or 'regions'

highest-scoring segment

• Find highest-scoring segments by dynamic programming

– Much better than "brute force" algorithm!

- Beginning & end of best path determine path uniquely, so
 - traceback is unnecessary
 - single pass through list suffices to find best path.

from lecture 7 :

• To reconstruct best path, need "traceback" pointer to immediate predecessor of *v* in best path:

$$T(v) = \begin{cases} v & w(v) = 0\\ \arg \max_{u \in \text{parents}(v)} (w(u) + w((u,v))) & w(v) \neq 0 \end{cases}$$

- in preceding graph, T(v) is the *parent* on *red edge* coming into *v*
 - if more than one such edge, pick one at random;
 - if no such edge, T(v) = v
- Sometimes useful to record *beginning* of best path:

$$B(v) = \begin{cases} v & w(v) = 0\\ B(T(v)) & w(v) \neq 0 \end{cases}$$

Implementing Dynamic Programming in a Computer Program

- Storing entire graph has space complexity = O(/V/+/E/)
- If graph has regular structure, can often "create" and process vertices and edges on the fly, without storing in memory
 - cf. edit graph (to be defined later) for aligning sequences

• *Highest weight path* via dynamic programming (no explicit graph):

```
in (pseudo-)pseudocode:

cumul = max = 0; start = 1;

for (i = 1; i \leq N; i++) {

cumul += s[i];

if (cumul \leq 0)

{cumul = 0; start = i + 1;}

else if (cumul \geq max)

{max = cumul; best_end = i; best_start = start;}

}

if (max \geq S) print best_start, best_end, max
```

- Correspondence to (implicit) WLL
 - i labels *edges*
 - cumul = w(v) (where v is vertex at end of edge i)
 - max = best w(v) so far
 - best_end = i corresponding to edge ending at best w(v) so far
 - start = edge following B(v)

Applications to Sequences

- A *sequence graph* of a sequence is linked list whose edges are labelled by sequence residues (in order):
- e.g. graph for sequence ACCGCTGCGAAG is:

$\overset{A}{\longrightarrow} \overset{C}{\longrightarrow} \overset{C}{\longrightarrow} \overset{G}{\longrightarrow} \overset{C}{\longrightarrow} \overset{C}{\longrightarrow} \overset{T}{\longrightarrow} \overset{G}{\longrightarrow} \overset{C}{\longrightarrow} \overset{G}{\longrightarrow} \overset{G}{\longrightarrow} \overset{G}{\longrightarrow} \overset{G}{\longrightarrow} \overset{A}{\longrightarrow} \overset{G}{\longrightarrow} \overset{G$

Weighted Sequence Graphs

• If attach weight to each residue, sequence graph becomes a WLL.

• Useful for identifying sequence regions ('target regions') with atypical composition:

- In DNA:
 - -GC-rich regions in AT-rich thermophile genomes
 - generally correspond to RNA genes (Rob Klein & Sean Eddy)
 - -horizontally transferred regions
 - -isochores (mammalian DNA)
- In proteins:
 - -hydrophobic regions
 - transmembrane segments
 - -hydrophilic regions
 - loops, intrinsically disordered regions
 - acidic or basic regions

'Optimal' scores

- Assume sequence consists of
 - target regions with residue freqs t_r
 - background regions with residue freqs b_r
 - *independence assumption* applies in both
- *Then* 'best' scoring system to detect the target regions uses LLRs:

 $s(r) = \log_a(t_r / b_r)$

• if residue freqs are unknown, can usually estimate iteratively

Karlin / Altschul approximation

- for $s(r) = \log_a(t_r / b_r)$, expected # segments of score $\ge S$ in (random) backgd seq of length N $\approx NK a^{-S}$
- for some constant *K* (not depending on *S*)
- Note that $a^{-S} = a^{-LLR} = 1 / LR$

so (apart from *K*) this is essentially the observation in lecture 6:

(from lecture 6) Average likelihood ratios

- *average LR* (for sites) ≈ *average spacing* between occurrences of 'site-like' sequences *in background*
- So e.g. for 3' splice sites
 - if the average *LR* is 1000, then one expects 'splice-sitelike' sequences to occur on average once per kb *in background sequence*
 - *N.B.* This says nothing about the frequency of *actual* splice sites! (which could be greater or smaller than 1 per kb), and so doesn't by itself provide the probability that an *apparent* splice site is an *actual* site.

Example: Finding 60% G+C regions in 40% G+C genomes

• Score system (LLR) :

 $-s(C) = s(G) = \log_{10} (.3 / .2) = .176$

- $-s(A) = s(T) = \log_{10} (.2 / .3) = -.176$
- Avg score (per position) in hiGC region:
 .3.176 + .3.176 + .2 (-.176) + .2(-.176) = .0352
- 100-base hiGC region: Score ~3.52; occurs once per ~ $10^{3.52} \approx 3.3$ kb in backgd
- 300-base hiGC region: Score ~10.5; occurs once per ~ $10^{10.5} \approx 36$ Gb

- So:
 - 300-base hiGC regions are unexpected in background
 - (likely have biological 'significance')
 - but 100-base such regions are frequent
- Caveats to preceding:
 - Applies to a specific assumed hiGC composition
 - we ignored K
 - Can get more precise results by simulation

Can use *non-residue-based* scores to find:

- Regions enriched in particular sequence *motifs*:
 - CpG islands in mammalian genomes
 - positive weight (e.g. +17) to the first C of each CpG, and
 - negative weight (e.g. -1) to every other base
 (This approach was used in *Nature* human genome paper).
 - Regions rich in (known) transcription-factor motifs
 - Optimal scores are LLRs, but now based on 'symbol frequencies' (where symbol = presence/absence of motif)

CpG Islands

- Regions in mammalian genomes where CpGs are *not* significantly underrepresented
 - likely not methylated in the germ line
- Found at 5' ends of ~60% of protein-coding genes (& in some RNA genes);
 - frequently extends into first exon & even coding sequence
- More likely to be associated with "housekeeping" genes (expressed in all or most cells),
 - less frequently with tissue-specific genes
- May play regulatory role (methylation of island can shut down gene)
- Substantial length variation: 75% are less than 850bp, but longest (in human) is 37kb

- Regions targeted by *next-gen read experiments* (symbols = *read start counts*)
 - CNVs (Homework 6)
 - Hypersensitive sites
 - CHIP-seq
- Conserved regions in *sequence alignments* (symbols = *alignment columns*)

- Coding sequences (symbols = *successive trinucleotides within a reading frame*)
 - Target freqs: codon freqs in known coding seq
 - Background: trinuc freqs in background

From Ini	tial	sequ	encin	g ai	nd analy	sis of	the	hume	in genc	ome	, Interr	natio	nal H	um	an Ge	nome	Sec	quencir	ng Co	onsorti	um	n, Nat	ure 409	9, 860-92	21 (2001)
Phe	Γ	171	000	1	AAA 0 GAA 1		Γ	147		1	AGA		Tyr	[124		1	AUA		Cys		99	UGU		
Leu	Г		UUC	_	UAA 8	Sei	ř 📃		UCC		GGA UGA		stop	-	158 0			GUA UUA		stop	-		UGC	- GCA	
	L	125	UUG	_	CAA 6		L	45	UCG	-	CGA	4	stop	-	0	UAG	<u> </u>	CUA	0	Trp	-	122	UGG	- CCA	7
	Г	127	CUU	7	AAG 1	3	Г	175	CCU	7/	AGG	11	His Gln	104	CAU	X	AUG	0	Arr. (F	47	CGU	7 ACG	9	
l eu		187	CUC	/	GAG 0	Pro		197	CCC	1	/ GGG (0		147	CAC	7	7^{aug}	12			107	CGC	/ GCG	0	
Leu	1.	69	CUA	-	UAG 2	PR	1	170	CCA	7	UGG	10		Γ	121	CAA	-	UUG	11	Arg		63	CGA	- UCG	7
	L	392	CUG	-	CAG 6		L	69	CCG	-	CGG	4			343	CAG	-	CUG	21	1		115	CGG	- ccg	5
	Г	165	AUU	7	AAU 1	3	Г	131	131 ACU	7	AGU	8	Asn [Г	174	AAU	1	AUU	1			121	AGU	\ ACU	0
lle	ą (218	AUC	1	GAU 1	Th	זר	192	ACC	1	GGU	GGU 0		L	199	AAC	7	GUU	33	Ser	- 191	191	AGC	7 gcn	7
	L	71	AUA	÷	UAU 5	10		150	ACA	1	UGU	10		Γ	248	AAA	-	UUU	UU 16	Arg [Γ	113	AGA	- ucu	5
Met	-	221	AUG		CAU 1	7	L	63	ACG	-	CGU	7	LyS	-,• L	331	AAG	-	CUU	22			110	AGG	- ccu	4
	-	111	GUU	7	AAC 20		Г	185	GCU	7	AGC	25	Asp [Г	230	GAU	1	AUC	0		-	112	GGU	\ ACC	0
		146	GUC	/	GAC 0		la	282	GCC	1	/ GGC	0		L	262	GAC	7	GUC	10	~	3	230	GGC	7 ^{ecc}	11
Val		72	GUA	-	UAC 5	Al		160	GCA	-	- UGC - CGC	10		Γ	301	GAA	-	UUC	14	Gly t	1	168	GGA	- ucc	5
	- 1	288	GUG	-	CAC 19		L	74	GCG	e r		5	Glu	L	404	GAG	-	CUC	8		42	160	GGG	- ccc	8

Coding sequences in prokaryotes

- Starting model:
 - codon freqs 1 / 61
 - background freqs 1 / 64 (equal freq assumption)
 - score per codon: $\log_{10}(64 / 61) = .021$
 - times 300 codons (typical gene len): 6.25
 - $-10^{6.25} = 1.8$ Mb
 - Requirement for starting ATG factor of 64
 - Can detect typical genes without any amino acid or codon bias info!
- Get better freqs from these predictions; iterate