Lecture 9: Sequence Alignment

- Sequence alignment and evolution

 mutations
- Edit graph & alignment algorithms
- Multiple sequence alignment
 - Higher-dimensional edit graphs
 - Progressive alignment

Aligning sequences: Major uses in genome analysis

- To find relationship between sequences from "same" genome, e.g.
 - finding gene structure by aligning cDNA to genome
 - assembling sequence reads in genome sequencing project
 - NextGen applications: "Resequencing", ChIPSeq, etc
 - Still need to allow for discrepancies
 - due to basecalling errors & polymorphisms, introns
 - but exact match methods (hashtables, suffix arrays) do most of the work

- To detect evolutionary relationships among sequences:
 - illuminating protein structure and function via distant matches
 - illuminating *mutation* and *selection* in genomes
 - helps find non-neutrally evolving (functional) regions

Here, frequent discrepancies make finding the alignment more challenging

Often we're interested in details of alignment
 – (i.e. precisely which residues are aligned),

but

• sometimes only care whether alignment score is large enough to imply sequences are related

Sequences & evolution

- Similar sequences of sufficient length usually have a common evolutionary origin
 - i.e. are *homologous*
- For a pair of sequences
 - "% similarity" makes sense
 - "% homology" doesn't
- In alignment of two homologous sequences
 - differences mostly represent *mutations* that occurred in one or both lineages, but
 - Not all mutations are inferrable from the alignment

Mutation types

- single-base substitution error by DNA polymerase
 most common type?
- strand slippage error by polymerase, inserting or deleting one or more bases
- DNA damage (radiation, or chemical) + errorprone repair, possibly altering more than one nucleotide, e.g.
 - CpG (hydrolytic deamination of methyl C)
 - dinucleotide changes, perhaps UV-induced
 dipyrimidine lesions (*Science* 287: 1283-1286)

- *Rearrangements* (break and rejoin)
 - Inversion (2 breaks on same chromosome)
 - Translocation (2 breaks on different chromosomes)
 - More complex (> 2 breaks)
- *Duplication* of a segment
- *Deletion* of a segment
- *Insertion/excision* of transposable element
- Acquisition of DNA from another organism ("*horizontal transfer*")

Mutation *rates* may depend on:

- lineage (organism): no universal "molecular clock"
- sex: e.g. in mammals, mut rate higher in males than females
- type of change e.g.
 - replacement ("substitution") of one nucleotide by another more freq than indels (insertions or deletions)
 - *transition* replacements
 - pyrimidine \rightarrow pyrimidine (T \leftrightarrow C), or purine \rightarrow purine (A \leftrightarrow G) more freq than *transversion* replacements
 - pyrimidine \rightarrow purine, or purine \rightarrow pyrimidine
 - GC or AT bias in some organisms
 - e.g. $G \rightarrow A$ more freq than $A \rightarrow G$ in most eukaryotes

- causes most genomes to be relatively A+T rich

- (small) deletions generally more frequent than (small) insertions

- sequence context (e.g. CpG effect)
- position in sequence some sites more slowly changing than others, due to
 - selection e.g. in coding sequences,
 - indels strongly selected against because would disrupt reading frame;
 - non-synonymous changes less freq than synonymous
 - variation in underlying mutation rate (cf. mouse genome paper)
 - may in part depend on replication timing (late replication less accurate)

- typical per base subst rates in non-coding DNA:
 - $\sim 1 \ge 10^{-9}$ per base per year (order of magnitude)
 - in humans, about 10^{-9} / base / year, $\Rightarrow 2 \ge 10^{-8}$ / base / generation $\Rightarrow 120$ / diploid genome / generation (recent de novo estimates are lower!)
- freq of gene duplication is ~ 10⁻⁸ per gene per year (*Science* 290: 1151-1155)
- freq of simultaneous dinuc substitutions is ~ 10⁻¹⁰ per dinuc site per year (*Science* 287: 1283-1286)
- freq of CpG ⇒ TpG or CpA changes is ~10-fold higher (per CpG) than other substs in mammalian DNA;
 - may account for $\sim 20\%$ of all substitutions.

Complications

- Parallel & back mutations
 - ⇒ estimating total # of mutations requires statistical modelling
- Segmental mutations
 - duplications & other large indels
 - inversions
 - are not well modelled by alignments
 - genome-scale alignments usually done 'in pieces'

Sequence alignments correspond to *paths* in a *DAG*!

The Edit Graph for a Pair of Sequences

- The edit graph is a DAG.
 - Except on the boundaries, the nodes have in-degree and out-degree both 3.
- The depth structure is as shown on the next slide. Child of node of depth *n* always has
 - $\operatorname{depth} n + 1$ (for a horizontal or vertical edge), or
 - $\operatorname{depth} n + 2$ (for a diagonal edge).

- *Paths* in edit graph correspond to *alignments* of subsequences
 - each edge on path corresponds to an alignment column
 - diagonal edges correspond to column of two aligned residues
 - horizontal edges correspond to column with
 - residue in 1st (top, horizontal) sequence
 - gap in the 2^d (vertical) sequence
 - vertical edges correspond to column with
 - residue in 2^d sequence
 - gap in 1st sequence

Above path corresponds to following alignment (w/ lower case letters considered unaligned):

aCGTTGAATGAccca gCAT-GAC-GA

Weights on Edit Graphs

- Edge weights correspond to scores on alignment columns.
- Highest weight path corresponds to highest-scoring alignment for that scoring system.
- Weights may be assigned using
 - a substitution score matrix
 - assigns a score to each possible pair of residues occurring as alignment column
 - or *profile*
 - scores specific to a particular sequence

and

- a gap penalty
 - assigns a score to column consisting of residue opposite a gap.

based on appropriate probability models (next lecture!)

Alignment algorithms

- *Smith-Waterman* algorithm to find highest scoring alignment
 - = dynamic programming algorithm to find highestweight path
 - is a *local* alignment algorithm:
 - finds alignment of subsequences rather than the full sequences.
- Can process nodes in any order in which parents precede children. Commonly used alternatives are
 - depth order
 - row order
 - column order

Complexity

- For two sequences of lengths *M* and *N*, edit graph has
 - (M+1)(N+1) nodes,
 - 3MN+M+N edges,
- time complexity: O(MN)
- space complexity to find

highest score and beginning & end of alignment

is *O*(min(*M*,*N*))

(since only need store node's values until children processed)

space complexity to reconstruct highest-scoring alignment:
 O(MN)

- For genomic comparisons may have
 - $-M, N \approx 10^6$ (if comparing two large genomic segments), or
 - *M* ≈ 10³, *N* ≈ 10⁹ (if searching gene sequence against entire genome);
 - in either case $MN \approx 10^{12}$.
- Time complexity 10¹² is (marginally) acceptable.
- \exists speedups which reduce constant by
 - reducing calculations per matrix cell, using fact that score often 0
 - (our program *swat*).
 - still guaranteed to find highest-scoring alignment.
 - reducing # cells considered, using nucleating word matches
 - (*BLAST*, or *cross_match*).
 - Lose guarantee to find highest-scoring alignment.

Multiple sequence alignment

- More sequences =>
 - (potentially) more accurate alignments
 - better *resolution* of mutations, selection
- Need > 2 sequences to *polarize* mutations

• An evolutionary *tree* relates the sequences!

The Edit Graph for a Pair of Sequences

Multiple Alignment via Dynamic Programming

- Higher dimension edit graph
 - each dimension corresponds to a sequence; co-ordinates labelled by residues
 - Each edge corresponds to aligned column of residues (with gaps).
 - Can put arbitrary weights on edges; in particular,
 - can make these correspond to probabilities under an evolutionary model (Sankoff 1975).
 - implicitly assumes independence of columns
- Highest weight path through graph again gives optimal alignment

Generalization to Higher Dimension

Each "cell" in 3-dimensional case looks like this:

Each edge projects onto a gap or residue in each dimension, defining an alignment column; e.g. red edge defines V

- # edges & # vertices are proportional to product of sequence lengths.
 - For k sequences of size N, is of order $O(N^k)$
 - impractical even for proteins ($N \sim 300$ to 500 residues) if k > 5:

 $300^5 = 2.4 \times 10^{12}$

Multiple alignments: paths in huge WDAGs

- To find high-scoring paths, need to
 - reduce size of graph
 - restrict allowed weighting schemes, and/or
 - sacrifice optimality guarantees
- Durbin *et al.* discuss methods implementing these ideas:
 - Hein
 - Carillo-Lipman
 - progressive alignment (e.g. Clustal)
- HMMs provide nice (but not guaranteed optimal) approach for constructing multiple alignments

Progressive alignment

- Simplest version: align one sequence (the reference) to each of the others, pairwise; construct multiple alignment from that.
- More generally, progressively align *pairs* of (*sequences or*) *alignments*, using a *guide tree*
 - Tree may reflect evolution, or sequence quality
 - Will tend to be more accurate
- Revise gaps

- correct errors due to gap placement & gap attraction

Guide Tree

- Complexity: N² × (n 1) where

 N = seq length, n = # seqs
 instead of Nⁿ
- (does not count gap correction)