
Lecture 9:

Sequence Alignment

• Sequence alignment and evolution

– mutations

• Edit graph & alignment algorithms

• Multiple sequence alignment

– Higher-dimensional edit graphs

– Progressive alignment
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Aligning sequences:

Major uses in genome analysis

• To find relationship between sequences from 

“same” genome, e.g.  

– finding gene structure by aligning cDNA to genome

– assembling sequence reads in genome sequencing project

– NextGen applications: “Resequencing”, ChIPSeq, etc

Still need to allow for discrepancies 

– due to basecalling errors & polymorphisms, introns  

but exact match methods (hashtables, suffix arrays)

do most of the work 
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• To detect evolutionary relationships among 

sequences:

– illuminating protein structure and function via distant 

matches

– illuminating mutation and selection in genomes

• helps find non-neutrally evolving (functional) regions

Here, frequent discrepancies make finding the 

alignment more challenging 
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• Often we’re interested in details of alignment 

– (i.e. precisely which residues are aligned), 

but

• sometimes only care whether alignment score is 

large enough to imply sequences are related
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Sequences & evolution

• Similar sequences of sufficient length usually 

have a common evolutionary origin 

– i.e. are homologous

• For a pair of sequences

– “% similarity” makes sense 

– “% homology” doesn’t

• In alignment of two homologous sequences

– differences mostly represent mutations that occurred 

in one or both lineages, but 

– Not all mutations are inferrable from the alignment
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Mutation types

• single-base substitution error by DNA polymerase 

– most common type?

• strand slippage error by polymerase, inserting or 

deleting one or more bases

• DNA damage (radiation, or chemical) + error-

prone repair, possibly altering more than one 

nucleotide, e.g.

– CpG (hydrolytic deamination of methyl C)

– dinucleotide changes, perhaps UV-induced 

dipyrimidine lesions (Science 287: 1283-1286)
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• Rearrangements (break and rejoin)

– Inversion (2 breaks on same chromosome)

– Translocation (2 breaks on different chromosomes)

– More complex (> 2 breaks)

• Duplication of a segment

• Deletion of a segment

• Insertion/excision of transposable element

• Acquisition of DNA from another organism 

(“horizontal transfer”)



8

• lineage (organism): no universal “molecular clock”

• sex: e.g. in mammals, mut rate higher in males than females

• type of change – e.g. 

– replacement (“substitution”) of one nucleotide by another more 

freq than indels (insertions or deletions)

– transition replacements 

• pyrimidine → pyrimidine (T  C), or purine → purine (A  G)

more freq than transversion replacements 

• pyrimidine → purine, or purine → pyrimidine

– GC or AT bias in some organisms 

• e.g. G→A more freq than A→G in most eukaryotes 

– causes most genomes to be relatively A+T rich

– (small) deletions generally more frequent than (small) insertions 

Mutation rates may depend on: 
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• sequence context (e.g. CpG effect)

• position in sequence – some sites more slowly changing 

than others, due to

– selection – e.g. in coding sequences,

• indels strongly selected against because would disrupt reading 

frame; 

• non-synonymous changes less freq than synonymous

– variation in underlying mutation rate (cf. mouse genome 

paper)

• may in part depend on replication timing (late replication less

accurate)
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• typical per base subst rates in non-coding DNA: 

– ~1 x 10-9 per base per year (order of magnitude)

– in humans, about 10-9 / base / year,  2 x 10-8 / base / generation

 120 / diploid genome / generation

(recent de novo estimates are lower!)

• freq of gene duplication is ~ 10-8 per gene per year (Science
290: 1151-1155)

• freq of simultaneous dinuc substitutions is ~ 10-10 per dinuc
site per year (Science 287: 1283-1286)

• freq of CpG  TpG or CpA changes is ~10-fold higher (per 
CpG) than other substs in mammalian DNA; 

– may account for ~20% of all substitutions. 
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...accgaatcgggtcccgtta...

...accgaatcaggtcccgtta...

...accgaatcaggtcccgtca...

...acagaatcgggtcccgtta...

...acagaatcaggtcccgtta...

...acagaatcagggtcccgtta...

...acagaatcagggtcccgtta...

...accgaatcagg-tcccgtca...

...acagaatcagggtcccgtta... ...accgaatcaggtcccgtca...

ONLY OBSERVED SEQUENCES

(Observed)  ALIGNMENT: 

(may not be unique!)

(Unobserved) MUTATION HISTORY (in general, this is not 

even inferrable!):
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Complications

• Parallel & back mutations 

 estimating total # of mutations requires 

statistical modelling

• Segmental mutations 

– duplications & other large indels

– inversions

are not well modelled by alignments 

– genome-scale alignments usually done ‘in 

pieces’
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Sequence alignments correspond to 

paths in a DAG!
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The Edit Graph for a Pair of Sequences
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• The edit graph is a DAG. 

– Except on the boundaries, the nodes have in-degree and 

out-degree both 3.

• The depth structure is as shown on the next slide. 

Child of node of depth n always has 

– depth n + 1 (for a horizontal or vertical edge), or 

– depth n + 2 (for a diagonal edge).
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• Paths in edit graph correspond to alignments of 
subsequences 

– each edge on path corresponds to an alignment column

– diagonal edges correspond to column of two aligned 
residues 

– horizontal edges correspond to column with 

• residue in 1st (top, horizontal) sequence

• gap in the 2d (vertical) sequence

– vertical edges correspond to column with 

• residue in 2d sequence

• gap in 1st sequence
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A C G T T G A A T G A C C C A
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aCGTTGAATGAccca
gCAT-GAC-GA

Above path corresponds to following alignment (w/ lower case letters 

considered unaligned):
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Weights on Edit Graphs

• Edge weights correspond to scores on alignment columns. 

• Highest weight path corresponds to highest-scoring 

alignment for that scoring system. 

• Weights may be assigned using 

– a substitution score matrix 

• assigns a score to each possible pair of residues occurring as alignment 

column

– or profile

• scores specific to a particular sequence

and

– a gap penalty

• assigns a score to column consisting of residue opposite a gap. 

based on appropriate probability models (next lecture!) 
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Alignment algorithms

• Smith-Waterman algorithm to find highest scoring 
alignment 

= dynamic programming algorithm to find highest-
weight path

– is a local alignment algorithm: 

• finds alignment of subsequences rather than the full sequences.

• Can process nodes in any order in which parents 
precede children. Commonly used alternatives are

– depth order

– row order 

– column order
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Complexity

• For two sequences of lengths M and N, edit graph has 

– (M+1)(N+1) nodes, 

– 3MN+M+N edges, 

• time complexity: O(MN)

• space complexity to find 

highest score and beginning & end of alignment 

is O(min(M,N))

(since only need store node’s values until children processed)

• space complexity to reconstruct highest-scoring alignment: 

O(MN)
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• For genomic comparisons may have 
– M, N  106 (if comparing two large genomic segments), or 

– M  103, N  109 (if searching gene sequence against entire 
genome); 

in either case MN  1012. 

• Time complexity 1012 is (marginally) acceptable. 

•  speedups which reduce constant by 
– reducing calculations per matrix cell, using fact that score 

often 0 
• (our program swat). 

• still guaranteed to find highest-scoring alignment.

– reducing # cells considered, using nucleating word matches
• (BLAST, or cross_match). 

• Lose guarantee to find highest-scoring alignment.



Multiple sequence alignment

• More sequences => 

– (potentially) more accurate alignments

– better resolution of mutations, selection

• Need > 2 sequences to polarize mutations 

• An evolutionary tree relates the sequences!
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The Edit Graph for a Pair of Sequences
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Multiple Alignment via

Dynamic Programming
• Higher dimension edit graph

– each dimension corresponds to a sequence; co-ordinates 
labelled by residues

– Each edge corresponds to aligned column of residues (with 
gaps). 

– Can put arbitrary weights on edges; in particular, 

• can make these correspond to probabilities under an evolutionary 
model (Sankoff 1975).

– implicitly assumes independence of columns

• Highest weight path through graph again gives optimal 
alignment



28

Generalization to Higher Dimension

V
A

M

Each edge projects onto a gap or residue in each 

dimension, defining an alignment column; e.g. red

edge defines

Each “cell” in 3-dimensional case looks like this:

V

−
M
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• # edges & # vertices are proportional to product of 

sequence lengths.

– For k sequences of size N, is of order O(Nk) 

• impractical even for proteins (N ~ 300 to 500 residues) if k > 5:   

3005 = 2.4 × 1012
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Multiple alignments: paths in huge WDAGs

• To find high-scoring paths, need to 

– reduce size of graph 

– restrict allowed weighting schemes, and/or

– sacrifice optimality guarantees

• Durbin et al. discuss methods implementing these ideas:

– Hein 

– Carillo-Lipman

– progressive alignment (e.g. Clustal)

• HMMs provide nice (but not guaranteed optimal) approach 
for constructing multiple alignments



Progressive alignment

• Simplest version: align one sequence (the 

reference) to each of the others, pairwise; 

construct multiple alignment from that.

• More generally, progressively align pairs of 

(sequences or) alignments, using a guide tree

– Tree may reflect evolution, or sequence quality

– Will tend to be more accurate

• Revise gaps 

– correct errors due to gap placement & gap attraction
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Guide Tree

k j

(k, j)

r s

(r, s)

(k, j, r, s)

u

(k, j, r, s, u)

Sequences

Alignments



• Complexity: N2 × (n – 1) where

– N = seq length, n = # seqs 

instead of Nn

• (does not count gap correction)
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